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A classification of infinitesimal symmetries of singular autonomous and 
nonautonomous Lagrangian systems is obtained. The relationship between 
infinitesimal symmetries and constants of the motion is given. 

1. ~ T R O D U C T I O N  

As is well known, it is important to obtain symmetries of Lagrangian 
Systems in order to integrate the motion equations (Binz et  al., 1988; de Le6n 
and Rodrigues, 1989; Olver, 1986; Marmo, 1988). In a recent paper (de Le6n 
and Martfn de Diego, 1995; see also de Lron and Martfn de Diego, 1994a,b) 
we have classified the infinitesimal symmetries of higher order regular 
Lagrangian systems and established the relationship between them and the 
constants of the motion. In the present paper a classification of infinitesimal 
symmetries of presymplectic systems is given and the corresponding constants 
of  the motion are obtained. Several Noether-type theorems are proved. The 
results are applied to the interesting case of  singular Lagrangian systems. 
Our procedure is the following. First, we consider the case of presymplectic 
systems admitting a global dynamics. This assumption significantly simplifies 
the matter. Next, we consider the arbitrary case and apply the results to the 
final constraint submanifold, which admits a global dynamics. A similar 
procedure also works for the nonautonomous case and precosymplectic sys- 
tems. In both cases, the Hamiltonian counterpart is studied and the results 
on both sides are related by means of the Legendre transformation. In a 
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forthcoming paper we shall classify the symmetries of singular higher order 
Lagrangian systems. 

Our results are an extension of previous ones by Crampin (1983) and 
Prince (1983, 1985) (see also de Le6n and Rodrigues, 1989), and complete 
the results of Carifiena and Rafiada (1988), Marmo et al. (1983), and Ferrario 
and Passerini (1990). The time-dependent case was studied by Carifiena and 
Fernandez (1993) and Carifiena et al. (1991, 1992) by using the technique 
of sections along maps. Our approach is consistent with the one by Prince 
and uses the cosymplectic formalism developed in de Le6n and Rodrigues 
(1988, 1990). 

The paper is organized as follows. In Section 2, we recall the constraint 
algorithm developed by Gotay and Nester (1979, 1980; Gotay, 1979). Section 
3 is devoted to a study of infinitesimal symmetries of presymplectic systems 
with a global dynamics. In Section 4, we extend these results to a general 
presymplectic system. The classification of infinitesimal symmetries is given 
in Section 5 and the corresponding constants of the motion for degenerate 
Lagrangian systems are obtained. In Section 6, the relationship between the 
Lagrangian and the Hamiltonian formalisms is studied. The second-order 
problem is considered in Section 7. Sections 8-11 apply these results to 
the following particular cases: generalized Hamiltonian dynamics, affine 
Lagrangians on the velocities, degenerate Lagrangian systems of type II, and 
degenerate Lagrangian systems with a Lie group of symmetries. The case of 
nonautonomous Lagrangian systems is studied in Section 12 as an application 
of the results for arbitrary precosymplectic systems. 

2. T H E  C O N S T R A I N T  A L G O R I T H M  

Let M be an n-dimensional manifold, to a closed 2-form with constant 
rank, and c~ a closed l-form. The triple (M, to, ~) is said to be a presymplec-  
tic system. 

The dynamics is determined by the solutions of the equation 

ix~ = c~ (1) 

Since ~o is not symplectic, (1) has no solution, in general, and even if it exists 
it will not be unique. Let b: TM ---> T*M be the map defined by b(X) = ixo~. 
It may happen that b is not surjective. We denote by ker to the kernel of b, 
i.e., ker b = ker 00. 

Gotay (1979) and Gotay and Nester (1979) developed a constraint algo- 
rithm for presymplectic systems. They consider the points of M where (1) 
has a solution and suppose that this set M2 is a submanifold of M. Nevertheless, 
these solutions on Ms may not be tangent to Ms. Then, we have to restrict 
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M2 to a submanifold where the solutions of  (1) are tangent to M2. Proceeding 
further, we obtain a sequence of submanifolds: 

• "" ---->Mk---> "'" --->M2--->ML = M 

Alternatively, these constraint submanifolds may be described as follows: 

Mi = {x • M/ot(x)(v) = O, Vv • T~M~--I} 

where 

TxM~--n = {v • TxM/to(x)(u, v) = O, Vu • TxMi_l} 

We call M2 the secondary constraint submanifold, M3 the tertiary constraint 
submanifold, and, in general, Mi is the i-ary constraint submanifold. 

If the algorithm stabilizes, i.e., there exists a positive integer k • N 
such that Mk = Mk+~ and dim Mk #: 0, then we have a final constraint 
submanifoM Mf = Mk, on which a vector field X exists such that 

(ixto = cO/M s (2) 

If 6 is a solution of  (2), then every arbitrary solution on My is of the 
form 6' = 6 + Y, where Y • (ker to n TMT). 

3. SYMMETRIES AND CONSTANTS OF THE MOTION FOR A 
P R E S Y M P L E C T I C  S Y S T E M  W I T H  A G L O B A L  DYNAMICS 

In this section, we give a classification of symmetries and constants of 
the motion for a particular case of presymplectic systems, those which admit 
a global dynamics (Carifiena and Rafiada, 1988). 

We say that a presymplectic system (M, to, c0 admits a global dynamics 
if there exists a vector field 6 on M such that 6 satisfies (1). This condition 
is equivalent to the following one: 

cx(ker to)(x) = O, Vx • M 

Definition 3.1. A function F: M ---> R is said to be a constant of  the 
motion of 6 if 6F = 0. 

Thus, if 3' is an integral curve of 6, then F o 3' is a constant function. 

Definition 3.2. A diffeomorphism qb: M ---> M is said to be a symmetry 
of 6 if dO maps integral curves of 6 onto integral curves of  6, i.e., T~b(6) = 6. 

Definition 3.3. A dynamical symmetry of 6 is a vector field X on M such 
that its flow consists of symmetries of 6, or, equivalently, [X, 6] = 0. 
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We denote by Y°~(M) the set of all the solutions of (1): 

Y°'(M) = {X • Y(M)lixto = or) 

Definition 3.4. A function F: M ---) R is said to be a constant of  the 
motion of ,~'~(M) if F is constant along all the integral curves of  any solution 
of (1). That is, if  F satisfies 

,~ ' (M)F = 0 

Therefore, if F is a constant of  the motion of .~ (M) ,  we have 

(ker to)F = 0 

Definition 3.5. A diffeomorphism d~: M --~ M is said to be a symmetry 
of 3E'°(M) if qb satisfies 

Tqb(~) e Y~'(M) 

for all ~ • 9~'(M). 

Definition 3.6. A dynamical symmetry of  3~'~(M) is a vector field such that 

IX, ff'~(M)] C ker to 

Remark 3. t. If the foliation defined by ker to is a fibration, then the 
quotient manifold/17/= M/ker to admits a structure of differentiable manifold 
and the canonical projection -rr: M ~ M is a surj~ective submersion. In that 
case, there exists a unique symplectic form 6~ on M such that "rr*~ = to. Since 
we have supposed that the presymplectic system admits a global dynamics, the 
1-form ct projects onto a 1-form ~ on M such that -rr*~ = ct. Since eb is 
symplectic, there exists a unique vector field ~ on M such that 

i~6 = 6t 

It is easy to prove that all the solutions of (1) are projectable and, in fact, 
all them project onto the vector field ~. From Definition 3.6, we deduce that 

IX, ker to] C ker to 

Therefore, X projects onto a vector field .~" on M such that 

= 0 

In other words, ~" is a dynamical symmetry of ~. This fact justifies Defini- 
tion 3.6. 

Remark 3.2. If F is a constant of the motion of ~ ' (M) ,  then XF is also 
a constant of the motion of  .:~(M). In fact, since (ker to)F = O, we have 
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[ x ,  ~ ]F = x (~F )  - ~ ( xF )  = - ~ ( x F )  = o 

for all ~ • E"(M). 

We denote by D(E~'(M)) the set of dynamical symmetries of E'~(M). 
Let X and Y be two dynamical symmetries of ,~'(M). Then [X, )I] is also a 
dynamical symmetry of E'~(M). In fact, 

[[X, }q, Y~(m)] = [X, [r, Y'(m)]] + [K [Y~(M), X]] 

C [X, ker to] + [Y, ker to] C ker to 

Therefore, D(E~°(M)) is a Lie subalgebra of the Lie algebra E(M) of vector 
fields on M. 

Def in i t i on  3. 7. A Car tan  s y m m e t r y  of (M, to, a) is a vector field X on 
M such that: 

1. ixto = dG,  for some function G: M ~ R. 
2. ixe~ = O. 

Propos i t i on  3.1. If X is a Cartan symmetry of (M, to, a)  then X is a 
dynamical symmetry of Y"(M). 

P r o o f  If X is a Cartan symmetry, then, for each solution ~ of (1) we have 

itx.~lto = Lxi~to - i~Lxto 

= L x a  = d ( i x a )  = 0 

Thus, [X, 6] • ker to, and therefore X is a dynamical symmetry of ~'°(M). • 

Let C(to, cO be the set of all Cartan symmetries of (M, to, o0. From a 
straightforward computation, we deduce that, if X and Y are Cartan sym- 
metries of (M, to, a),  [X, Y] is also a Cartan symmetry. Therefore, C(to, c0 
is a Lie subalgebra of .qf(M). From Proposition 3.1 we obtain that 

C(to, ~) C D(~:~"(M)) 

T h e o r e m  3.1 (Noether Theorem). If X is a Caftan symmetry of (M, to, 
e0, then the function G (as in Definition 3.7) is a constant of the motion of 
E~'(M). Conversely, if G is a constant of the motion of E~'(M), then there 
exists a vector field X such that 

ixto = d G  

and, moreover, X is a Cartan symmetry of (M, to, cO, and every vector field 
X + Z with Z • ker to is also a Cartan symmetry of (M, to, or). 
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P r o o f  In fact, if G is a constant of the motion of  .["(M), it satisfies 
(ker to)G = 0. Thus, the equation 

irto = d G  

has a globally defined solution X on M and, since 

0 = ~G = i ~ d G  = i j x t o  

= - ixi~to = - ixet 

we deduce that X is a Cartan symmetry of (M, to, ~) and that every vector 
field X + Z with Z e ker to is a Cartan symmetry. 

Conversely, if X is a Caftan symmetry of  (M, to, a), then, for each 
solution { of  (1), we obtain 

0 = i x a  = ixi~to = - i j x t o  = - ~ ( G )  

Therefore, G is a constant of the motion of  .{~(M). • 

4. S Y M M E T R I E S  A N D  C O N S T A N T S  O F  T H E  M O T I O N  F O R  
G E N E R A L  P R E S Y M P L E C T I C  S Y S T E M S  

Let (M, to, a)  be a presymplectic system. In general, (1) does not have 
a globally defined solution as in Section 3. The constraint algorithm allows 
us to obtain (if it is possible) a final constraint submanifold M I. 

First of all, consider the presymplectic s t r u c t u r e  (My, J7  to, j l  ~ c~) where 
Jr: Mf--> M is the embedding of  Mf  into M. We know that any solution of 
(1) is a vector field X on Mf such that 

(ixto = a ) /M  s (3) 

If we put toMi = f f t o  and o~M I = j f  OL, it is easy to prove that, if ( is a solution 
of (I), then ( is also a solution of  the following equation: 

ixtoMf = am I (4) 

Define the sets 

, { ' ~ , ( M  z) = {X  e Y(Mi) l ix toM ~ = OLMI} 

,~°J(Mf) -.: { X  E , :~(Mf)/( ixto : OL)/M]. } 

Hence, .T.~'(Mf) C ,~'Ms(Mf). 
If we suppose that the rank of  toMr is constant, then (M~-, toMt, amy) is a 

presymplectic system with a global dynamics. We can therefore apply all the 
definitions and results of Section 3 to this presymplectic system. 
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We obtain that D(Y'MI(Mf)) is a Lie subalgebra of  .~(Mf) and 
C(toMi, e~M I) is a Lie subalgebra of  .~(Mj). Since any Cartan symmetry of 
(M, COMI, e~Mi) is a dynamical symmetry of y,oMr(Mf), we deduce that 

C(toM I, C~MI) C D(,~°'MJ(M[)) 

Theorem 3.1 now reads as follows: 

Theorem 4.1 (Noether Theorem). If X is a Cartan symmetry of (M r, 
tom I, C~MI), then G is a constant of  the motion of  ,~MI(M].). Conversely, if G 
is a constant of  the motion of ~'~MI(My), then there exists a vector field X on 
My such that 

ixtoMi = dG 

and, moreover, X is a Cartan symmetry and every vector field X + Z, with 
Z e ker toMI, is a Cartan symmetry, too. 

Since Y~'(Mf) C Y'MI(MI), we can distinguish another type of symmetry 
and constant of the motion. 

Definition 4.1. 1. A function F: Mf ~ R is said to be a constant of 
the motion of  Y°'(Mf) if F is a constant along all the integral curves of the 
solutions of  (3), i.e., 

.~'(Mf)F = 0 

2. A diffeomotphism qb: M I ---) M I is said to be a symmetry of  Y°~(Mf) 
if + maps integral curves of solutions of  (3) onto integral curves of  solutions 
of (3). 

3. A dynamical symmetry of .~(Mf) is a vector field on My such that 

[X, ~ ' (Mf)]  E ker to fq TMf 

We now consider diffeomorphisms qb: M ---) M such that they preserve 
the 2-form to and the l-form a (i.e., they preserve the presymplectic structure): 

( [ ) $ t o  = to, (])SOt. ~ Ot 

Proposition 4.1. If the diffeomorphism qb: M --> M preserves the presym- 
plectic structure, then it restricts to a diffeomorphism +,-: Mi ~ Mi, where 
Mi is the i-ary constraint submanifold. Therefore, + restricts to a diffeomorph- 

ism (~f: Mf---) Mr. 
Proof If i = 1, the proposition is trivially true. Now, suppose that the 

proposition is true for i = m and we shall prove that it is also true for i = 
m + l .  
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We shall prove that, if v e TxM,,~, then ddo(x)(v) • T,(.~M~. In fact, 
for each u • T+mM,,,, we obtain 

to(do(x))(ddo(x)(v), u) = to(x)(v, ddo-I(do(x))u) = 0 

because to is do-invariant and ddo-I(do(x))u • TxMm by the hypothesis of 
induction. Thus, we deduce that 

ddo(x)(T,M,~) = T,(,)M,, ~, 

We now only have to prove that, if x • Mm+t, then dO(x) • M,,,+l, i.e., 
for all v ~ T,(x)M,~, e~(do(x))(v) = O. But, since e~ is also do-invariant, we obtain 

e~(do(x))(v) = ct(x)(ddo-l(do(x))v) = 0 • 

Corollary 4.1. Let X be a vector field on M such that: 
1. ixto = dG, for some function G: M --) R. 
2. ixc~ = O. 

Then X/u/is a Cartan symmetry of  (My, toM/, aM:). 

Proof Since the flow of  X consists of  diffeomorphisms which preserve 
the presymplectic structure, then, from Proposition 4.1, X is tangent to M/. 
Moreover, since X satisfies 

ixto = dG 

the restriction of X to My also satisfies 

iX/MftoMf = d( G/Mf) 

Finally, 

iX/M etMy = 0 

Thus, X/M: is a Caftan symmetry of  (Mr, toM:, aM/) and G/u: is a constant of  
the motion of  ~M:(Mf). • 

Example 4.1. Consider the presymplectic system (R 6, to, et), where 

tO = d.x 1 A d ) : 4  - dx2  A d x  3 

a = x4dx4 - x3dx5 - xsdx3 

with (x I, x 2, x 3, x 4, x 5, x 6) the standard coordinates on R 6. It is easy to prove 
that ker ~0 is generated by a/Ox5 and O/Ox6. The only secondary constraint is 
do1 = x3 = 0. Since there are not tertiary constraints, the constraint algorithm 
ends in Mz, i.e., 
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Mf = M 2 = {(Xl, x2, x3, x4, x5, x6) ~ R6/x3 : 0} 

The solutions of the equation 

(ixto = a)/MS 

are 

0 
Y ~ ( m f )  = x 40Xl  "l- ker  to 

If we denote by j: Mf ---> R 6 the embedding of  Mf in R 6, then 

J' to = toms = dxl ix dx4 

Therefore, ker toM/is generated by O/Ox2, O/Oxs, and O/Ox6. The solutions of 
the equation 

ixtoMf -= j *a 

are 

0 
• ~'M:(Mf) = x40xl + ker IOM: 

Thus, 3~"(Mf) is strictly contained in 3~'~M:(Mf). We shall now study the 
symmetries and constants of  the motion for the presymplectic system (M, 
to, o0. 

A function F: Mf --> R is a constant of the motion of Y~'(M;) if it 
satisfies the following conditions: 

OF OF aF 
x40xl = O, Ox5 O, Ox6 0 

Therefore, each function F which depends only on x2 and x4 is a constant of 
the motion of  3~'~(Mf). For instance, Fl(x~, xz, x4, xs, x6) = x4 and F2(x~, xz. 
x4, xs, x6) = xz are constants of  the motion. 

A function F: My --> R is a constant of  the motion of Y<°M:(M:) if 
it satisfies 

OF OF OF OF 
X 40Xl O, OX2 O, OX5 O, OX6 0 

The functions F which are constants of the motion of ~'M:(Mf) are the ones 
which depend only of x4, for instance 

Fl(xl, x2, x4, xs, x6) = x4 

Obviously, all the constants of the motion of  ~T.<oMt(Mf) are also constants 
of the motion of  ~'~(Mf). 
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The vector field X = OlOxl on R 6 satisfies 

ixto = dG, where G(xb  x2, x3, x4, x5, x6) = .1:4, ixot = 0 

From Corollary 4.1, we deduce that X is a Cartan symmetry of (My, 
cog;, age) and Gig e is a constant of  the motion of  ~r '~ (Mf ) .  

5. S Y M M E T R I E S  A N D  C O N S T A N T S  OF T H E  M O T I O N  F O R  
S I N G U L A R  L A G R A N G I A N  S Y S T E M S  

Let Q be an n-dimensional differentiable manifold. Consider a Lagran- 
gian L: TQ -~ R such that the Hessian matrix 

o¢o0 e) 

is nonregular. This type of Lagrangian is called singular or degenerate. Let 
EL be the energy associated with L, defined by EL = CE - E, where C is 
the Liouvil]e vector field on TQ. We denote by o~ L the Poincar~-Cartan 
l-form defined by c~L = J*(dE) and, by ~oL the Poincar6-Cartan 2-form 
defined by col = -dc~L, where J is the canonical almost tangent structure 
on TQ. Let us recall that J is a ( I , I )  tensor field on TQ locally defined by 

a 
J = @ d q  A 

o¢ 

and C is the infinitesimal generator of  the dilations on TQ: 

0 
C = 4 a a(ia 

where (qA, QA) are fibered coordinates on TQ. Thus, we have 

EL = ~ (7 A OL _ L(qA ,L1A) 
a=J aq a 

oL 
OLL = - -  dq m 

a : i  Oq a 

O2L O2L 
toL - OqaOqe dq m A dq e + oqAoo------- ~ dq 3 A do e 

We suppose that the 2-form toz. has constant rank and we apply the 
constraint algorithm to the presymplectic system (TQ, oaz., dEt.). Then we 
obtain the following sequence of constraint submanifolds: 
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"'" -'* Pk ---) "'" ~ P3 ---> P2 ~ P l = TQ 

If the algorithm stabilizes, then there exists an integer k such that 
Pk., = Pk = Pf and Pf is the final constraint submanifold. Thus, we can 
translate all the definitions and results of  Section 4 to this particular case. 

Denote by X c the complete lift and by X" the vertical lift to TQ of a 
vector field X on Q. 

Definition 5.1. A vector field X on Q is said to be a Lie symmetry of 
.T.~P:(Pf) if: 

1. X c is tangent to Pf. 
2. [Xypf, .~top/(pf)] C ker top/ 

The set ~(~,oe:(p:)) consisting of  all the Lie symmetries of ~/oe/(pf) is 
a Lie subalgebra of ~(Q).  Moreover, we have 

([d(~?J(P[)))~)/ C D(Y.~e:(P[)) 

Definition 5.2. A diffeomorphism ~:  Q --~ Q is said to be a symmetry 
of L if L o TO = L. A vector field X on Q is said to be an infinitesimal 
symmetry of  L if 

X"L = 0 

i.e., if its flow consists of symmetries of  L. 

If we denote by I(L) the set of all the infinitesimal symmetries of L, 
then I(L) is a Lie subalgebra of  .15(Q). 

Proposition 5.1. If X is an infinitesimal symmetry of L, then O(XC)/e/= 
(X"L)/p/is a constant of  the motion of  ~tol,f(pf). 

Proof. In local coordinates, we have 

X¢ L = XA 3L + clB OXA 3 ~  __ 0 
Oq a Oq B 3dl a 

and 

Lxc L -g- ]dq8 OL OX a + dq B 
0(1 a dq B 

~ OL = X A 02L qB OXA 02L _ _  OXA~ 
OqAaqB + + dq B 3q B 3dlA3dl n 3dl A OqSJ 

= --~(XCL) dq B 

= 0  
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But, if Lx,eLL = 0, then 

iX"tOL = d(c~L(X")) 

Moreover, we have XCEL = 0. We obtain the required result after applying 
Corollary 4.1. • 

Proceeding as in the proof of Proposition 5.1, we deduce that I(L) C 
~(Y~P:(Pf)). 

Definition 5.3. A vector field X on Q is said to be a Noether symmetry i f  

X"L = G ~ 

for some function G on Q, where G" denotes the complete lift o f  G to TQ. 

By a similar procedure to that used in Proposition 5.1, we can characterize 
a Noether symmetry as follows: 

1. ix~toL = dF for some function F. 
2. X"EL = O. 

In fact, we can choose F = c~L(X ~) - G", where G v denotes the vertical 
lift of  G. 

Proposition 5.2. If X is a Noether symmetry, then e~L(X c) -- G v is a 
constant of  the motion of  ~'~P/(Py). 

Proof. See the proof of Proposition 5.1. • 

Denote by N(L) the set of all the Noether symmetries. We deduce that 
N(L) is a Lie subalgebra of  ,~(Q) and, we have 

I(L) C N(L) C ,~(~T."P:(Pf)) 

(N(L))fe[ C C(top¢, ote¢) 

6. THE RELATIONSH IP  W I T H  TH E H A M I L T O N I A N  
F O R M U L A T I O N  

Let L: TQ ---> R be an arbitrary Lagrangian. The Legendre map Leg: TQ 
---> T*Q is locally written as 

Leg: (qa, qA) . . ~  (qA PA) 

with PA = aL/O(t a. If L is singular, Leg is not a diffeomorphism. However, 
we suppose that L is almost regular, i.e., MI = Leg(TQ) is a submanifold 
of T*Q and Leg is a submersion onto M~ with connected fibers. The submani- 
fold Ml will be called the primary constraint submanifold. 
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Let hQ be the Liouville l-form and tOQ = -dhQ the canonical symplectic 
form on T*Q. 

Since the Lagrangian is almost regular, the energy EL is constant along 
the fibers of Leg. Therefore, EL projects onto a function H on Mj: 

H(Leg(x)) = EL(x), Vx ~ TQ 

If we denote by g~: Mt ~ T*Q the embedding of M t into T'Q, then 
we obtain a presymplectic system (M t, (g~)*tOa, dH). If we now apply the 
constraint algorithm to it, we shall obtain the following sequence of con- 
straint submanifolds: 

• "" --->Mk---> "'"---~Mz-'-->MI 

Denote by M:the final constraint submanifold (if it exists) for this presymplec- 
tic system. The Legendre map restricts to each submanifold Pi, i --> 1, of TQ 
and then we obtain a family of surjective submersions Legi: Pi --> M~ which 
relates the constraint submanifolds Pi and Mi. In fact, Legi is a fibration, for 
all i. Moreover, the quotient manifold P~/ker Leg/p~ is diffeomorphic to M,-. 
The following commutative diagram illustrates this point: 

Leg 
TQ.  __ ) T*Q 

l "; Jx ~.~M I 

P z - ~ g 2 ~ g l  

J2 T ~ ' ~  M2 

"-----~M 3 
"t "t 

Consider the equations 

(ix~L = dEL),,p z (5) 

and 

( ixto~ = dI-1)/M/ (6) 

Gotay and Nester (1979) proved that the Lagrangian and Hamiltonian 
formulations are equivalent in the following sense. Given a vector field ~ 
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Y(Pf )  which is a solution of  (5) and Leg/-projectable, then its projection 
Z = T Legf(~) is a solution of  (6). Conversely, if Z E Y(M/) is a solution 
of (6), then each projectable vector field on Pf onto Z is a solution of (5). 

Let Ji-t: Pi --> TQ and gi-i: Mi ---> Mb 1 <-- i (where go is the identity), 
be the natural embeddings, and g:_L = g6 o gi-i ,  1 <- i. Denote by 

toPi = J~toL, 1 ~ i <-- k 

toMi = (g:)*(toQ), 1 <- i <-- k 

the restrictions of toL and toQ to P,. and Mi, respectively. It is easy to prove that 

toPi = Legi*toMi and j~'EL = (Legi)*gi* H 

Proposition 6.1. If F is a constant of  the motion of ~T.o'p:(pf), then F is 
projectable onto My and its projection /e is a constant of  the motion of  

Proof  In fact, if F is a constant of the motion of .~e:(pf) ,  then 

(ker ¢Oe/)F = 0 

But, since ker toe A TPf C ker cop:, we deduce that (ker col Ct TPf)F = O. 
Now, since ker TLegf C ker co L N TPf, F is projectable. If Z~ms is a solution 
of the equation 

iXtoMy = gj* (dH) 

then any projectable vector field ~ on Pf onto Z~M: is a solution of  the equation 

since 

(ixtop/ = dj? EL)/p/ (7) 

i~top: - j]" (dEL) = i~(Leg]" toM/) -- Leg~ g]" (d id  

= Legf: (iz,~MtoM: -- g}~ (dH)) 

= 0  

Hence, ~ is a solution of  (7). Since ~F = 0, we have Z,,M:(P) = O. • 

Proposition 6.2. If F is a constant of  the motion of y~L(py), then F is 
projectable onto My and its projection P is a constant of  the motion of  
:~<<',ll', (Ms). 

Proof  In fact, if Zo, u, is a solution of  the equation 

(iXtoMI = dlq)m: 
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then any vector field ~ on P: projectable onto Z,~ut is a solution of  (5). Thus, 

since ~F = 0, we have Z,~M~ P = O. • 

Proposition 6.3. If X is a Cartan symmetry of (My, coMy, g:~ (dH)), then 
any vector field X' on Py such that TLegf(X') = X is a Cartan symmetry of  
(Pf, cop/, j?  (dEL)). 

Proof If a vector field X on M/satisfies (I) ixcoM: = dG with G: M: 
R, and (2) X(H/u:) = 0, then for any X' e ~(P/) with TLeg:(X') = X we 
have (I) ix, cop/= dG' with G' = Leg:G, and (2) X'(Eup:) = 0. Therefore, 
X' is a Cartan symmetry of  (Pf, coepj~'(dED). • 

Proposition 6.4. If F is a constant of the motion of Z~u ~ which is a 

solution of  the equation 

( ixcoMi = dH)/M: 

then (Legf)*F is a constant of  the motion for any ~L such that TLegf(~o,L) = 
Zt~Mi • 

If F is a constant of  the motion of  Z,~M: which is a solution of the equation 

ix, toM/= g/* (dH) 

then (Legz)*F is a constant of  the motion for any ~,o~, I such that TLegpi(~oez) = 

Z~,M:. 

Proof It directly follows from the equivalence of the Lagrangian and 
Hamiltonian formulations. • 

Let ~ be the operator which maps vector fields on Q into functions 
on T 'Q:  

(~')(c~) = ~(X(x) )  

for all a e T.*Q. Locally, if X = X A O]Oq A, w e  get 

(~X)(q a, PA) = Pa XA 

where (qa, PA) are the induced coordinates on T*Q. 
Let us recall that the complete lift of  a vector field X on Q to T*Q is 

the vector field X C* defined by 

ixc'coQ = d(~X) (8) 
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or, in other words, X c* is the Hamiltonian vector field with Hamiltonian 
function LX. Locally, we obtain 

0 OX e 0 
X c* = X A - -  - P8 - -  

Oq A Oq a 3pA 

(see de Le6n and Rodrigues, 1989). 

Proposition 6.5. Let X be a vector field on M such that X"L = 0, i.e., 
X is an infinitesimal symmetry of L. Then X" is Legrprojectable and its 
projection is X ~ .  Moreover, (g})*~(X) is a constant o f  the motion of 

Y~M/( Mf ). 

Proof. We shall first prove that X c is projectable onto Ml, i.e., X c satisfies 

[X c, ker TLeg] C ker TLeg 

Since ker TLeg = ker cot- fl V(TQ), then, if Z ~ ker coL, we have that 

il x~.zqcot. = Lx,izcot- - izLx~cot- 

= --izdix~toL -- izix,dcot- 

= 0  

Therefore, [X", ker cot.] C ker coL. If  we remember  that J[XL V] = 0, for 
each vertical vector field on TQ, we deduce that X is projectable. 

In local coordinates, we have 

Xc = xA ~ + oe OX A 0 
Oq A Oq 8 0~1A 

Thus, 

= (X a 0 + Cl c o x  B OZL 0 TLeg|(X c) 
Oq a Oq c odIBo(] a OpA 

But, since XCL = 0, we obtain 

+ X B -  

and 

OZL O )/M 

aCao"  opA , 

0 OX B 0 )/M ~* 
: : X / M  I TLeg'X~ XAO-q ~ P" O-~ O-PA 

Moreover, 

ix~,coj = d( gl)*~X 

Leg~(X}~ If) = X~(ED 
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Therefore, X ~  H = 0. Now, from Corollary 4.1 and the Noether theorem, 
we obtain the result. • 

Example 6.1. Consider the Lagrangian function L: TR 3 --> R defined by 

1 
L = ~ (qt + (12) 2 

(see KrupkovL 1994). Here (ql, q2, q3) are the standard coordinates on R 3 
and (ql, q2 q3, (11, (12, (13) the induced ones on TR 3. 

The energy and the Poincar4-Cartan 1-form and 2-form are, respectively, 

1 
EL = C L -  L =-~ ((11 + q2) 2 = L 

oLa = (ql + (12) dql + (ql + 02) dq2 

tot = dql a d(11 + dqt ^ d(12 + dq2 A d(11 + dq2 A d(12 

It is easy to prove that ker eL is generated by 

3 3 3 3 O 3 

3qi 3qz '  3q3 3(1t 3(12 303 

There are no secondary constraints, i.e., we have a global dynamics. 
The solutions of the equation 

ixo~L = dEc 

are given by 

+ q2 ~ + ker toL 
E'L(TQ) = 4t oql oq2 

A function F: TQ --~ R would be a constant of the motion of 
Y"'L(TQ) if it satisfied the following equations: 

OF OF OF OF 
(11 + (12 - - ~ O , j  

Oq2 Oql Oq2 

OF OF OF OF 
- 0 ,  = 0 ,  

Oq3 0(11 0(12 0(13 

- - 0  

- - 0  

F(ql, q2, q3, (1~, (12, (13) = (11 + (12 

Therefore, any function F((1t, (12) such that OF/O(1t = 0F/0(12 is a constant of 
the motion of .~WL(TQ). For instance, 
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is a constant of the motion of Y.°'L(TQ). From the Noether theorem, we obtain 
the Cartan symmetries for the constant of the motion F, which are, precisely, 
the solutions of the equation 

Then, 

iX~OL = dF  

X - 1  3 + 1  0 + Z  
2 0 q l  20q2 

where Z e ker tOL. In fact, 3/3q~ and O/Oq2 are infinitesimal symmetries of 
L. From Proposition 5.1 we have that 

O~L = O¢'L = ~/1 "4- 42 

is a constant of the motion, just F. 
Now, we establish the Hamiltonian formulation for this example. Since 

OL OL 3L 
. . . .  (iI q_ 02, P3 -- -- 0 Pl O(i t (l t + (i2, P2 O(i2 O(i[ 

we deduce that the submanifotd M~ of T*Q is defined by the following 
primary constraints: 

61 = Pl -- P2 = 0 and 62 = P3 = 0 

I f  we  take coord ina tes  (qt, q2, q3, Pl)  on Ml,  we obtain  that 

o~M~ = (gi)*to¢ = dq I/,, dpl + dq z ,", dpl 

where 

g'l(q', q2, q3, Pl)  = (ql, q2, q3, Pl,  Pt ,  0) 

The Hamiltonian energy H is 

1 
i - i  = 

Thus, ker ooM~ is generated by 

3 0 3 
Oq 3' Oq 1 c~q 2 

and the solutions of the equation 

ixtoM~ = dH 
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are given by 

a 
= - -  + ker ~T.'MI(MI) p~ Oq t tOM1 

Since a function F: M~ --) R is a constant o f  the motion o f  .{"M~(M0 if 
and only if 

OF OF OF OF 
- - = 0 ,  - 0 ,  - 0  Pl Oq~ Oq 3 Oql Oq~ 

we deduce that F has to be o f  the form F = F(pO. 

7. THE SECOND-ORDER DIFFERENTIAL EQUATION 
PROBLEM 

Let Z be a vector  field on M / s u c h  that 

(izto~ = dhO/M: 

We know that 

P: /ker  TLegf -~ Mf 

Given a vector field X on P/which projects onto Z, we can find a unique 
point y in each fiber o f  Legf such that X satisfies at y the S O D E  condition, 
i.e., (JX)y = Cy. 

In local coordinates,  if X is locally written as 

0 0 
X = X a + 2 a - -  

Oq A 0£1A 

since z = Legf(y) ~ Mr, and we identify z with the fiber which contains y, 
we deduce that X a is constant  on the fiber. Moreover,  

0 
U = JX - C = (X a - qA) ~--A 

Oq 

is tangent to the fibers. Let or(t) = (qA(t), (tA(t)) be the integral curve o f  U 
which contains the point y with coordinates (q~, qa). We deduce that 

or(t) = (q~, X a - e - t ( X  A - (1~)) 

We then obtain 

y = lim or(t) = (qA, X a) 
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Thus, the point y with coordinates (q~, X a) is in the same fiber as y, since 
the fibers are closed. Moreover, U(y) = 0, and, therefore X satisfies the 
SODE condition at the point y. 

We obtain a differentiable section a: Mf ---) Pf of Le& and its image 
S = ot(Mf) is a submanifold of Pf, on which X satisfies the SODE condition. 
In general, X is not tangent to S, but the vector field ~' -- Tc~(Z) is tangent 
to S, it is a solution of the equation 

(ixt% = dEL)/s 

and it also satisfies the SODE condition. 
Now we study the relationship between the symmetries and constant of  

the motion defined on S and the ones defined on PI. 

Proposition 7.1. If Z,~MI is a solution of  the equation 

ix~oM i = dH/M i (9) 

then the vector field ~' = Tot(ZoMI) on S is a solution of the equation 

ix~s = dEus (10) 

where ms = j*toL and j is the embedding of S into TQ. 
Conversely, if t~' is a solution of (9), then Z = T~-I(~ ') is a solution 

of  (10). 

Proof In fact, 

i~,o~s = ir.z(ot*eaM I) 

= (ot-')*(izmMi) 

and, since 

dELls = (et-1)*(dH/Mi) 

we obtain the required result. • 

Since S and Mfare diffeomorphic and the dynamics on them are equiva- 
lent, there exists a complete equivalence between symmetries and constants 
of the motion via ~x as well as via Legf/S: S ---> My. 

8. G E N E R A L I Z E D  H A M I L T O N I A N  D Y N A M I C S  

In this section, we study the relationship between the symmetries and 
constants of the motion for a regular Lagrangian system on TQ and the 
symmetries and constants of the motion for the presymplectic system defined 
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on T*Q • TQ. This formulation using the space T*Q • TQ was established 
by Skinner and Rusk (1983a,b) (see also Carifiena et aL, 1988; L6pez, 1989; 
de Le6n and Rodrigues, 1989). 

Let Q be an n-dimensional differentiable manifold. Consider the Whitney 
sum of T*Q with TQ, denoted by 

Let 

Wo = T*Q @ TQ 

7rj: 7"*Q G TQ ~ T*Q 

~ :  7"*Q • TQ ---) TQ 

be the projections onto the first and the second factors, respectively. 
Let L: TQ ---) R be a regular Lagrangian with energy EL. The Poincar6- 

Cartan 2-form toL is therefore symplectic and the Legendre transformation 
is a local diffeomorphism. If we suppose, moreover, that the Lagrangian L 
is hyperregular, then the Legendre transformation Leg: TQ ~ T*Q is a 
diffeomorphism. We denote by ~L the Euler-Lagrange vector field, by too 
the canonical symplectic form on T'Q, and by XH the Hamiltonian vector 
field with energy H. We have 

(Leg-l)*EL = H 

TLeg(~L) = XH 

(Leg-l)*toc = to o 

Define on Wo = T*Q ~) TQ a presymplectic 2-form to = 'rr~'toQ and a function 
D: W0 ~ R by 

D = ('rr i, "rr2) - ar~ < L 

If (qA) are local coordinates on a neighborhood U of  Q, (qA, QA) the induced 
coordinates on TU, and (qA, Pa) the induced coordinates on T 'U,  then we 
denote by (qA Pa, QA) the induced coordinates on T*U ~3 TU. Locally, D is 
written as follows: 

D(q A, PA, qA) = pAOA _ L(qa, qA) 

We obtain a presymplectic system (W0, to, dD) and we apply the constraint 
algorithm to it (L6pez, 1989; Carifiena et aL, 1988). The constraint submani- 
fold Wl of W0 is just Wi = Graph(Leg), and we denote by j i  the embedding 

Jl 
Wj -~ Wo 
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WI is locally characterized by the constraints 

3L 
(~A = PA 3d[A , A = 1 . . . . .  n 

If  we consider the 2-form j~to = tow~ on WI, we obtain that 

ker O~w~ = TWi L N TWt 

Since TW~- is locally generated by {3/3(tA}, A = 1 . . . . .  n, then a vector 
field X is tangent to Wl if and only if X(d~A),~v~ = 0, for any A. Since L is 
regular, 0/3qa, A = 1 . . . . .  n, is not tangent to Wi and thus ker tOw~ = 0. 
Hence, (Wi, tOWl) is a symplectic manifold. 

Since "rrl/W~ and 'rrww~ are diffeomorphisms, we can consider the inverse 
maps a~ and a2 of these projections. They are defined as follows: 

al :  T*Q ---> Wi 

(0.) (qA hA) ~ qA -~PA ' PA 

0~2: TQ ~ Wl 

We obtain the following commutat ive diagram: 

~ T*Q 

T 

a2 ~ T Q  

The condition of a vector field X to be tangent to W l may be written 
as follows. If  

, O X,, A O X = X A ~ + XA + - -  
aq a Opa OL[ A 

then X is tangent to WI if and only if 

32L 32L 
X A - + X  " A -  - X ~ ,  k =  1 . . . . .  n 

OqAOL[ a o(]AOq B 

Since ct 2 is a diffeomorphism, the vector field X = T~2(~L ) is well 
defined. Locally, if 
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~L = oA ~---~ ~- ~ A 
Oq a 0(1A 

we obtain 

Oqa 00---7 o48aq------ ~ + 04.04A] ~p~ , 

Moreover, X is the solution of the equation 

ixtowl = dj~ D 

i.e., X is the Hamiltonian vector field Xj~D. 
We will now study the relationship between the symmetries and constants 

of the motion of these systems. 

Proposition 8.1. A function g: TM --~ R is a constant of the motion of 
~L if and only if ('rr2~)*g is a constant of the motion of Xi*lo. 

Proof In fact, since Xj~o = (a2).({c), we have 

Xj'lo((Irz/w,)*g) = ('rr2,,w,)*(l~Lg) = 0 

The converse is trivial, because rrz/w, is a diffeomorphism, m 

Corollary 8.1. A function g: T*M --* R is a constant of the motion of 
Xn if and only if ( ' rh~)*g is a constant of  the motion of  Xi~o. 

Proposition 8.2. A vector field J? is a dynamical symmetry of Xj'~D if 
and only if ( ' r r l~) , )?  and ('rrz/w~)..g are dynamical symmetries of Xn and of 
~L, respectively. 

Proof In fact, we have the following equivalences: 

[2. xj;o] = 0 ¢~ [ ( ~ , , ) . 2 .  x . ]  = 0 ¢~ [(~r2~,,).2, ~L] = 0 • 

Proposition 8.3. A vector field ~" on WI is a Caftan symmetry for the 
presymplectic system (Wb Oawl, dj*D) if and only if ('rq/w)..,~ is a Cartan 
symmetry of (T 'Q,  tOQ, dH) or, equivalently, if (~rz/w).2 is a Cartan symmetry 
of (TQ, coL, dEL), 

Proof In fact, if 

i~tow~ = dF with F: Wt --~ R 

then 

e~( igo~wl) = i(~t:wO, ~toQ = d(oc*t F ) 
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In a similar way, by applying c~2 we obtain that 

i~2/w,).X, to L = d(et~ F )  

Moreover, 

f ( ( j ?  D )  = 0 ¢:~ (( ' r t , /w,) , ,k ' )H = 0 ¢:~ ( ( ' r r~w , ) , 8 )EL  = 0 • 

Let X be a vector field on Q. There exists a unique vector field X ' ' : )  
on W0 such that 

and (w2),X ("x" = X" ( ' rrO,X (c'c*) = X"* 

In local coordinates, if 

XC : x A  0 -t- ~]B oXA 0 
aq A aq B aCI A 

a a X  B a 
X :  = X A -  - P8 i 

Oq A aq A apA 

X(C,C, ) : XA a oxB i .at- qB aXA a 
aq---~ - P8 aq A apA aq B aq A 

then 

Thus, X ("'"*) is tangent to W~ if and only if 

. . . . .  P8 aqAa~l 8 aq B o4Ao(IB:/WI ~ Oq :Av, 
(11) 

i.e., if and only if X c and X c* are Leg-re la ted .  Therefore, if X is an infinitesimal 
symmetry of L, it satisfies (1 I). 

Propos i t i on  8.4. Let X be a vector field on Q. Then, we have 

X " L  = 0 ¢=~ XC*H = 0 ¢=~ (X~C':~D)/w~ = 0 

9. A F F I N E  L A G R A N G I A N S  

Let Q be an n-dimensional differentiable manifold. Consider a function 
h: Q --> R and a l - form ~ on Q. We obtain an affine Lagrangian function 
on T Q  as follows: 

L = f x + h "  

where ti: T Q  --> R is the function defined by ~(x, u) = (~(x), u) and 
hV(x, u) = h(x)  with u e T~.Q. If tx = aA(q) dq  A, we obtain 

L = aA(q)(t A + h 



Singular Lagrangian Systems 999 

Thus, 

Ec = - h  v 

ot L = _ hi. v 

to E = dlx v 

Since V(TQ) C ker tot., we have 

dim ker toL -< 2 dim(Vp ker toD 

Therefore, L is a Lagrangian of type III according to the classification by 
Cantrijn et al. (1986). 

We apply the constraint algorithm to the presymplectic system (TQ, 

toL, dEL). 
For the sake of simplicity, we shall assume that the 2-form dl.z is symplec- 

tic. Of course, we may analyze the general case when dlx is degenerate, but 
nothing especially new will be obtained. Then, there exists a unique vector 
field Xh such that 

ixhdtX = dh 

Xh is the Hamiltonian vector field with energy h. Thus, the presymplectic 
system (TQ, toL, dED has a global dynamics, since the complete lift X~, of 
Xh is a solution of the equation 

i x ( -  toL) = dEL (12) 

The set of solutions of (12) is 

3~'°L(TQ) = X~h + V(TQ) 

Since the presymplectic system (TQ, tot., EL) has a global dynamics, all 
the definitions and results obtained in Section 2 are applicable to it. 

The Legendre transformation is defined by 

Leg: TQ ---) T*Q 

(qa, qa) ~ (qm, am) 

The map 

+: Q ---) Leg(TQ)  = Mi 

(qa) ~ (qA,  aA ) 

is a diffeomorphism and Im ~ = Mr, Leg = 'rQ o +. We deduce that Leg is 
a submersion with connected fibers. Therefore, L is almost regular. If we 
denote by j~: Mt --) T*Q the embedding, since + is a diffeomorphism, we 
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obtain that the 2-form j~oa 0 = o~Mj is symplectic. If we define H: Mt ---> R 
by H o Leg = EL, we have that + * H  = - h  and, moreover, +*to,u ~ = dl.t. 
Then, the Hamiltonian vector fields XH and --Xh are +-related because the 
symplectic structures d~  and (toM, are symplectomorphic. Thus, the study of  
the symmetries and constants of  the motion for both systems is equivalent. 

Our purpose is to find a relationship between the symmetries and con- 
stants of  the motion for the symplectic system (Q, d~L, dh) and the presymplec- 
tic system (TQ, tOL, dEL). 

Proposition 9.1. If F is a constant of the motion of  Xh, then F v is a 
constant of  the motion of  ~°~L(TQ). Conversely, if G is a constant of  the 
motion of  ~:f'~L(TQ), then G is projectable onto Q and its projection is a 
constant of  the motion of  Xh. 

Proof In fact, i fXhF = 0, then V(TQ)F" = 0 and also X~IF ~ = 0. Thus, 
F ~ is a constant of the motion of  .~"L(TQ). Conversely, if G is a constant of  
the motion of  3~L(TQ), since V(TQ)G = 0, we have that G is projectable. 
If we denote by g the projection of G onto Q, then, since X~hG = 0, we 
deduce that Xhg = O. • 

Proposition 9.2. Let X be a vector field on Q. If X is a dynamical 
symmetry of  Xh, then X" is a dynamical symmetry of ,~OL(TQ). 

Proof If [X, Xh] = 0, then [X c, X~,] = 0. We also have that [X c, V] 
V(TQ), VV  ~ V(TQ). Hence, we deduce that 

[X C, .?~'L(TQ)] C V(TQ) = ker COL • 

Proposition 9.3. If X is a Cartan symmetry of  the presymplectic system 
(Q, dlx, dh), then X " is a Caftan symmetry of (TQ, tOL, dED, and conversely. 

Proof In fact, if X is a Cartan symmetry of (Q, dl*, dh), we have 

ix dp~ = df  and Xh = 0 

where f is a function on Q. But this holds if and only if 

ix C d~" = dff and X~h ~ = 0 

i.e., if X ~ is a Cartan symmetry of  the presymplectic system (TQ, toL = dtx\ 
dEL = - d h ~ ) .  • 

From Proposition 9.3 we obtain, as a corollary, Theorem 2 of  Carifiena 
et al. (1988). This theorem states that if L is a regular Lagrangian and ~L is 
the Euler-Lagrange vector field, there exists a one-to-one correspondence 
between the constants of  the motion of  ~L and the Noether symmetries of  
the presymplectic system (TTQ, dot[, dE[). 
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10. REDUCTION OF A DEGENERATE LAGRANGIAN SYSTEM 

Let L: TQ ---> R be a degenerate Lagrangian. We suppose that it satisfies 
the following assumptions (Cantrijn et al., 1986): 

1. The Poincarr-Cartan 2-form to m is presymplectic, that is, it has 
constant rank. 

2. The Lagrangian L admits a global dynamics. 
3. The foliation defined by ker toL is a fibration. In such a case, the 

leaf space TQ/ker to m = (TQ)o admits a manifold structure. 

From these assumptions, there exists a unique symplectic form COL on 
the manifold (TQ)o such that COL = (~L)*(COL), where ~L is the projection ~rL: 
TQ ---> (TQ)o. Moreover, the energy function EL is also projectable because 
(ker tOL)E m = O. We denote by E'L its projection. Since ((TQ)o, COL) is a 
symplectic manifold, then there exists a unique vector ~ such that it satisfies 
the equation 

i~CO L = d E  L 

and each vector field ~ s 3~°~C(TQ) projects onto ~, i.e., VXrL(~) = ~. 
The following results, which give the relationship between the constants 

of the motion and symmetries for the presymplectic system (TQ, toL, dEg) and 
the symplectic system ((TQ)o, COL, dEL), can be proved by a direct computation. 

Proposition 10.1. If f: TQ ---> R is a constant of the motion of 
.~t°L(TQ), then f is projectable onto a function f which is also a constant of 
the motion of 6. Conversely, if f: (TM)0 ---> R is a constant of the motion of 
4, then (TrL)*f is a constant of the motion of ~.'°L(TQ). 

Proposition 10.2. If X is a dynamical symmetry of 3~°'L(TQ), then X is 
projectable and its projection X is a dynamical symmetry of ~. Conversely, 
if X is a dynamical symmetry of ~, then any vector field on TQ that is 
projectable onto ~" is a dynamical symmetry of ~OL(TQ). 

Proposition 10.3. If X is a Caftan symmetry of (TQ, toL, dEL), then X 
is projectable and its projection ~" is a Cartan symmetry of ((TQ)0, COL, dEL). 
Conversely, if )f is a Cartan symmetry of ((TQ)0, COL, dEL), then any vector 
field on TQ that is projectable onto .~ is a Cartan symmetry of (TQ, toL, dEL). 

If we suppose, moreover, that ker toL is a tangent distribution [i.e., ker 
toL is the natural lift of a distribution D on Q (Cantrijn et al., 1986)], then 
the canonical almost tangent structure J and the Liouville vector field C on 
TQ project onto an integrable almost tangent structure J0 on (TQ)o and onto 
a vector field Co such that 

JoCo = O, LcoJo = -Jo  
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respectively. De Ledn et al. (1994) proved that (TQ)o has the unique structure 
of  a vector bundle which is isomorphic to the tangent bundle TS of  the 
singular manifold S of Co and this isomorphism transports the canonical 
almost tangent structure and the Liouville vector field of TS to J0 and Co, 
respectively (see also de Filippo et al., 1989). We denote by dO the isomorphism 

+: TS --9, (TM)o 

Proposition 10.4. Let X be a vector field on Q. If X c is rrL-projectable, 
then there exists a vector field Y on S such that 

TdO(y c) = T~rL(X ~) 

Proof Since ker tot. is an involutive tangent distribution, we have ker 
tot = D", where D is an involutive distribution on Q. From the Frobenius 
theorem, there exist local coordinates (x A, xn), 1 <- A <- k and k + 1 -< 
B <-- n, around each point of  Q such that 

Therefore 

(0 0) 
kercot = Ox B,O~ 8 

Thus, in these coordinates, we can write the projection WL as 

,ITL(X A, X B, .cA, ~B) = (X A, xA) 

By the definition of  S, we can find local coordinates ( y a  yA) such that the 
isomorphism do is locally expressed by 

+(¢, ¢)  = (x  ~, ~)  

By using these local coordinates, the result follows from a direct com- 
putation, m 

Moreover, if Y is a vector field on S, there exists a vector field X on Q 
such that 

T~L(X') = Tdo(Y c) 

In fact, for each vector field X' on Q, with X' = X + Z, where Z belongs 
to D, we have 

T'rrL((X') C) = Tdo(Y') 

We denote by COs = do*a~t and by g = do*L), the pullbacks of ~1. and 
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/~L, respectively. Therefore (TS, ms, dg) is a Hamiltonian system, and there 
exists a unique vector field ~s such that 

i~s¢O s = dg 

Obviously, we have that ~s = (T~b)-l(~) • From Proposition 10.4, we deduce 
the following result. 

Proposition 10.5. Let X be a vector field on Q. 

1. If X is a Lie symmetry of ?2~'L(TQ), then there exists a vector field 
Y on S such that P is a dynamical symmetry of ~s. 

2. If X is a Noether symmetry of L, then there exists a vector field Y 
on S such that yc is a Cartan symmetry of the symplectic system 
(TS, ~o s, dg). 

Example 10.1. We shall apply the previous results to the electron-mono- 
pole system (Marmo, 1988; de Filippo et al., 1989; de Le6n et al., 1994). 
The equations of motion are 

I d~ vi 3 = 

L dt r 3 

(13) 

where r is the distance of the point to the origin 0 ~ R 3, n = eg/4"rrm is the 
product of the electric and magnetic charges divided by 4"rr times the mass 
of the electron, and 

1 
~k = - 1  

0 

ijk in cyclic order 
ijk in anticyclic order 
if two indices are equal 

This system does not admit a global Lagrangian description. We can solve 
this problem by enlarging the configuration space to R X SU(2). Then we 
can define a global Lagrangian L such that its motion equations project onto 
equations (13). In fact, consider the Hopf fibration: 

'rrH: SU(2) ~ S z 

and the induced projection 

T(idR X "rrH): T(R × SU(2)) --~ T(R × S 2) 
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Define a global Lagrangian on T(R × SU(2)) by 

1 (  3 )  
L(r,s)  ---~ i "z + r 2 ~ (M) z + ni tr cr3s-l~ 

j=l 

Here, r denotes the coordinate in R and s an element of SU(2), x ~ is the 
/-coordinate of ~H(s), and ~3 is the usual Pauli matrix. 

Now, consider the presymplectic system 

(T(R × SU(2)), coL, dED 

with COL the Poincar6-Cartan 2-form and EL the energy function, ker co L is 
generated by 

{xL x~l 

where X3 is the fundamental vector field of U(I) - S l in the Hopf bundle 
"rrH: SU(2) --> S 2. Moreover, we have that the presymplectic system admits 
a global dynamics and the foliation defined by ker COL is a fibration. Then, 
the quotient manifold admits a unique vector bundle structure such that it is 
isomorphic to a tangent bundle. Thus, we obtain the following diagram: 

T(R x SU(2)) ( ~ T(R X SU(2)) _ T(R X SU(2)) 
ker COL U( 1 ) 

~ RxSU(2) d~ T 

R × SU(2) T(R × S z) 

~ R ×  S 2v" 

Electron-monopole system 

From Propositions 10.4 and 10.5, we can relate the symmetries and 
constants of the motion of the presymplectic system 

(T(R × SU(2)), COL, dEL) 

with the corresponding ones of the symplectic system 

(T(R × $2), (qb-t)*~L, (qb-I)*/~L) 

where OL and E'L are the projections of COL and EL, respectively. 



Singular Lagrangian Systems 1005 

If we consider coordinates (y0, yl, y2, y3) on SU(2), then a generic 
element s of SU(2) can be represented by 

3 

s = y°I + i / d  
k=l 

where 0.1, 0 -2, and 0.3 are Pauli matrixes and these coordinates satisfy the 
constraint O,°) 2 + (yl)2 + (y2)2 + (y3)2 = 1. Now, let {yt, y2, y3} be the 
basis of right-invariant vector fields of the Lie group SU(2): 

3 . . 0 
C~ _ yi c3 ....... ~ ejky J 1 < i <-- 3 

y i  = yO - ~  OY ° ,~=1 OY k '  

If we denote by the same letters the induced vector fields on R × SU(2), 
then it is easy to prove that 

(y i )cL = 0 

that is, (yi) is an infinitesimal symmetry of L. From Proposition 5.1, we have 
that (Y/)"L is a constant of the motion of .~L(T(R × SU(2))). Also, from 
Proposition 10.5, the vector field qb,(f';) is a Cartan symmetry of the symplec- 
tic system (T(R × $2), (4~-l)*~L, (~b-l)*/~t.), and the constants of the motion 
(Yi)VL project onto three constants of the motionfi ,  1 -< i -< 3, of ~s, where 
~s is the Hamiltonian vector field of (qb-l)*/~L. In fact, we have that 

/'/X i 
(yi)v  L = e:}kxJ..¢ k + - -  

r 

which shows that it is projectable and its projection is a constant of the 
motion of the projected symplectic system. Sincefi is a constant of the motion 
of ~s, from the Noether theorem, there exists a vector field X; (the Hamiltonian 
vector field off")  which is a Cartan symmetry of the symplectic system. A 
straightforward computation shows that these vector fields X i are precisely 
the complete lifts of the infinitesimal generators 

3 0 
X i =  ~ ,  ~.~kXi"ff-~, l <-- i<--3 

k=l  

obtained from the canonical basis of do(3), the Lie algebra of SO(3), that 
is, the rotations in R 3. 

11. DEGENERATE LAGRANGIAN SYSTEMS WITH A LIE 
GROUP OF SYMMETRIES 

Let (M, co) be a presymplectic manifold, i.e., to is a closed 2-form with 
constant rank. We suppose that we have a presymplectic action of a Lie 
group G on a manifold M: 

do : G × M---> M 
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i.e., qb*to = to, Vg • G (Binz et al., 1988). If we denote by t3 the Lie algebra 
of  the Lie group G, a momentum map is a map J: M ---) f~* such that for all 

• .q the vector field ~4 (the infinitesimal generator of the flow +~×p,~) is a 
Hamiltonian vector field of  J~ = (J, ~), i .e,  

i~MoJ = d(J~) 

Proposition 11.1. Let (M, to, dF) be a presymplectic system. We consider 
a presymplectic action 4): G X M ---> M of a Lie group G which admits a 
momentum map and such that F is G-invariant. If the constraint algorithm 
for the presymplectic system (M, to, dF) ends in a final constraint submanifold 
My and j: Mr ---> M is the embedding of M s into M, then we have that, for all 

• .q, the mapj*(J~):  Mf ~ R is a constant of  the motion of .~'°MJ(Mf) and 
therefore it is a constant of the motion of .~'~(Mf). 

Proof Let J: M --> g* be a momentum map. Hence 

i~Mto = d(J~) 

and, moreover, from 4)* F = F, 'v'g E G, we have 

L ~ F  = ~MF = 0 

Now we apply Corollary 4.1. • 

We now consider the action of a Lie group G on a manifold Q: 

d~ : G X Q---) Q 

and lift this action to an action on TQ: 

dpr: G X TQ---> TQ 

as follows: 

(~bT)g: TQ --) TO, (+T)g = Tgpg 

We suppose that L: TQ ~ R is a G-invariant Lagrangian, i.e., L o (kg r = L, 
Vg • G. We have that EL, aa, and tot, are invariants by qb r and we deduce 
that ~'~ • ~ the vector field ~Q is an infinitesimal symmetry of L. From 
Proposition 5.1, we deduce that ((~Q)"L)/p i is a constant of the motion of  
.~'eI(Pf) (here, Pf is the final constraint submanifold for the presymplectic 
system (TQ, toL, dEL)). 

12. S Y M M E T R I E S  A N D  C O N S T A N T S  O F  T H E  M O T I O N  F O R  
P R E C O S Y M P L E C T I C  S Y S T E M S  

Let (M, f~, "q) be a precosymplectic system, i.e., 1-1 is a closed 2-form 
with constant rank 2r and x I a closed l-form (Chinea et aL, 1994). 
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The dynamic for this precosymplectic system (M, f l ,  -q) is given by 
introducing a Hamiltonian function H: M ~ R. We consider the modified 
precosymplectic system (M, fill = 12 + dH ^ ~q, "q). The 2-form 12 H is 
obviously closed, although it may not have constant rank. In fact, all that 
we obtain is that 

2r <-- rank OH <-- 2r + 2 

We distinguish two cases: 

1. First Case. OH has constant rank 2r, that is, (fl  H, dt) is a precosymplec- 
tic structure. 

Then, the equations 

i x f l n  = 0, ix'q = 1 (14) 

have globally defined solutions, i.e., there exists a vector field 1~ on M such 
that satisfies (14). It is clear that any vector field 

+ ker On 71 ker "q 

is a solution of (14). We denote by 3~m'.'~)(M) the set of all the solutions of 
(14), i.e., 

,TJnnm)(M) = {~ + Z/Z ~ ker II n f3 ker xl} 

Defini t ion 12.1. A constant of  the motion of  ,t~mNm)(M) is a function F: 
M ~ R such that c~'mnm~(M)F = 0. 

Remark  12.1. A constant of the motion of ,{m"n)(M) satisfies that 
(ker f~t n xl)F = 0. 

The following lemma allows us to give a useful characterization of the 
constants of the motion of ~mH'n~(M). 

L e m m a  12.1. If a function F: M ~ R is a constant of  the motion of  
~(nnm)(M) then we have that 

(ker ~H)F = 0 

Proo f  In fact, if Z e ker llt¢, we obtain 

Z = ( Z -  -q(Z)~) + "n(Z)~ 

for any solution ~ of (14). Since Z - rl(Z)~ E ker ~ n  f3 ker "q, from Remark 
12.1, we deduce that, if F is a constant of  the motion of  ,{mu.n)(M), then 

Z F  = (Z - rl(Z)~)F + "q(Z)(~F) = 0 • 

Therefore, we can characterize the constants of the motion as the func- 
tions F such that they satisfy the property 
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(ker ~H)F = 0 

Definition 12.2. A vector field X on M is said to be a dynamical symmetry 
of Y(~H"II(M) if 

[X, ker OH] C ker ON 

Remark 12.2. If X is a dynamical symmetry of ,~c'(nH'~)(M), then any 
vector field Y such that Y = X + Z, with Z ~ ker I"}H, is also a dynamical 
symmetry of .~(nn'~(M). In fact, for any Z' E ker OH we have 

i[z,z'I~H = L z i z ' ~ H -  iz'Lz-QH 

= 0  

Therefore, [Z, Z'] ~ ker ~H. We deduce that 

[Y, ker 1"}HI = IX, ker ~H] + [ker I~H, ker I~H] C ker l"}H. 

Remark 12.3. Denote by D(3~nH'n)(M)) the set of all the dynamical 
symmetries of 3~nH'n)(M). It is easy to prove that if X and Y are two dynamical 
symmetries of y~nH.nJ(M), then IX, Y] is also a dynamical symmetry of 
.~nH'~)(M). Thus, D(Y(nH'~)(M)) is a Lie subalgebra of ,~(M). 

Definition 12.3. A Cartan symmetry of the precosymplectic system 
(M, l~n, "q) is a vector field X on M such that 

ix~H = dG 

where G ~ Ca(M). 

Proposition 12.1. If X is a Caftan symmetry of the precosymplectic 
system (M, ~H, ~1), then X is a dynamical symmetry of ytnN.-q)(M). 

Proof In fact, if Z E ker ~H, we have 

ilx.zlt'} H = Lxizl~H -- izLxI~H 

= --izdixD~H = 0 

Then, [X, ker I~H] C ker ~H and therefore X is a dynamical symmetry of 
Y~I~-,'~(M). • 

Remark 12.4. We denote by C(I"}H, ~q) the set of all the Cartan symmetries 
of the precosymplectic system (M, ~H, 11). If X and Y are Cartan symmetries 
such that 

iX~H = dG and iv~H = dG' 

then [X, Y] is a Cartan symmetry of (M, l-}H, "q). In fact, 
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i[x ~OH = Lxivf~n - iyLx~'~n 

= LxdG'  - ivddG 

= d ( S G ' )  

The set C(l'~n, "q) is a Lie subalgebra of ,~(M). Moreover, from Proposition 
12.1 we deduce that C(OH, aq) C D(.:~¢I~H'nI(M)). 

Theorem 12.1 (Noether Theorem). If a vector field X is a Cartan symme- 
try of the precosymplectic system (M, I~H, ~q), then G is a constant of the 
motion of ,~¢nM'~(M). Conversely, if G is a constant of the motion of  
,~¢~H,'~)(M), the equation 

i x O n  = dG 

has a solution, and each solution is a Cartan symmetry of the precosymplectic 
system (M, On, "q). 

P r o o f  In fact, if X is a Cartan symmetry of  the precosymplectic system 
(M, On, vl), then, for all Z E ker 12n, we obtain that 

i z i x O n  = Z G  = 0 

Hence, G is a constant of the motion of E¢n"'nJ(M). Conversely, if G is a 
constant of  the motion 3~CnH'~)(M), the equation 

i x O n  = dG 

has a solution because (ker On)G = 0, and therefore every solution is a 
Cartan symmetry of  the system (M, OH, rl). • 

2. Second  Case. OH does not have constant rank. 
We know that (14) has a solution at the points x of  M where rank(f~n)x 

= 2r. We define 

M2 = {x E M/rank (~n )x  = 2r} 

which we suppose to be a submanifold. On/142, (14) has a solution for all 
x c Mz, i.e., there exists a vector v ~ T , M  such that 

i,,(On).~ = 0 and ivrlx = 1 

There exists a vector field X on M2 tangent to M~ such that X satisfies (14). 
But, in general, X will not be tangent to M2. Then we consider the submanifold 
M 3 where there exist solutions of (14) tangent to M z. Following this process, 
we obtain a sequence of  submanifolds Mr, l = 1 . . . . .  called the l-ary constraint 
submanifolds. We can also define the submanifolds Mt as follows: 

Mt = {x ~ Mt-l/'q.,. E b.~(T~Mt-i)} 
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where 

b: TM ---) 7"*M 

S ~ ix~H + (ix'q)'q 

If the algorithm ends, we obtain the manifold M r where the equations 

(ixl'~n = 0, ix'r 1 = I)/M I 

have as a solution a vector field ~ on My. My is called the final constraint 
submanifold. 

If we denote by jf: My --> M the embedding of My in M, then we can 
consider the precosymplectic system (M I, j j*~H,j~'q) and study the sym- 
metries and constants of the motion for the precosymplectic system 
~l)au,JT~(My) as in the first case. 

We can apply these results to classify the symmetries and constants of  
the motion when we have a singular nonautonomous (or time-dependent) 
Lagrangian. In fact, if we suppose that L: R × TQ ---> R is a nonautonomous 
Lagrangian such that tOLi is a presymplectic 2-form of  rank 2r on {t} × 
TQ - TQ, where Lt(x) = L(t, x), Vx • TQ, then, if we define 

OL = djL + EL dt 

D~L = --dOL 

we have that 2r <- rank ~L -< 2r + 2. The intrinsic motions equations are 

ixDL = O, ix dt = 1 

As above, we can distinguish two cases, that is, rank f~L = 2r and otherwise. 
In addition, a finer analysis can be done by considering infinitesimal symmet- 
ries on the configuration space R × Q. The reader can obtain these results 
by taking into account those for the regular case (Prince, 1985; de L6on and 
Martfn de Diego, 1995). 
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