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Symmetries and Constants of the Motion for
Singular Lagrangian Systems

Manuel de Léon' and David Martin de Diego?
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A classification of infinitesimal symmetries of singular autonomous and
nonautonomous Lagrangian systems is obtained. The relationship between
infinitesimal symmetries and constants of the motion is given.

1. INTRODUCTION

As is well known, it is important to obtain symmetries of Lagrangian
systems in order to integrate the motion equations (Binz et al., 1988; de Ledn
and Rodrigues, 1989; Olver, 1986; Marmo, 1988). In a recent paper (de Le6n
and Martin de Diego, 1995; see also de Léon and Martin de Diego, 1994a,b)
we have classified the infinitesimal symmetries of higher order regular
Lagrangian systems and established the relationship between them and the
constants of the motion. In the present paper a classification of infinitesimal
symmetries of presymplectic systems is given and the corresponding constants
of the motion are obtained. Several Noether-type theorems are proved. The
results are applied to the interesting case of singular Lagrangian systems.
Our procedure is the following. First, we consider the case of presymplectic
systems admitting a global dynamics. This assumption significantly simplifies
the matter. Next, we consider the arbitrary case and apply the results to the
final constraint submanifold, which admits a global dynamics. A similar
procedure also works for the nonautonomous case and precosymplectic sys-
tems. In both cases, the Hamiltonian counterpart is studied and the results
on both sides are related by means of the Legendre transformation. In a
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forthcoming paper we shall classify the symmetries of singular higher order
Lagrangian systems.

Our results are an extension of previous ones by Crampin (1983) and
Prince (1983, 1985) (see also de Ledn and Rodrigues, 1989), and complete
the results of Carifiena and Rafiada (1988), Marmo er al. (1983), and Ferrario
and Passerini (1990). The time-dependent case was studied by Carifiena and
Ferndndez (1993) and Carifena et al. (1991, 1992) by using the technique
of sections along maps. Our approach is consistent with the one by Prince
and uses the cosymplectic formalism developed in de Ledn and Rodrigues
(1988, 1990).

The paper is organized as follows. In Section 2, we recall the constraint
algorithm developed by Gotay and Nester (1979, 1980; Gotay, 1979). Section
3 is devoted to a study of infinitesimal symmetries of presymplectic systems
with a global dynamics. In Section 4, we extend these results to a general
presymplectic system. The classification of infinitesimal symmetries is given
in Section 5 and the corresponding constants of the motion for degenerate
Lagrangian systems are obtained. In Section 6, the relationship between the
Lagrangian and the Hamiltonian formalisms is studied. The second-order
problem is considered in Section 7. Sections 8—11 apply these results to
the following particular cases: generalized Hamiltonian dynamics, affine
Lagrangians on the velocities, degenerate Lagrangian systems of type II, and
degenerate Lagrangian systems with a Lie group of symmetries. The case of
nonautonomous Lagrangian systems is studied in Section 12 as an application
of the results for arbitrary precosymplectic systems.

2. THE CONSTRAINT ALGORITHM

Let M be an n-dimensional manifold, w a closed 2-form with constant
rank, and o a closed i-form. The triple (M, w, o) is said to be a presymplec-
tic system.

The dynamics is determined by the solutions of the equation

ixd = & (1)

Since w is not symplectic, (1) has no solution, in general, and even if it exists
it will not be unique. Let b: TM — T*M be the map defined by b(X) = iyw.
It may happen that b is not surjective. We denote by ker w the kernel of b,
i.e., ker b = ker w.

Gotay (1979) and Gotay and Nester (1979) developed a constraint algo-
rithm for presymplectic systems. They consider the points of M where (1)
has a solution and suppose that this set M, is a submanifold of M. Nevertheless,
these solutions on M, may not be tangent to M,. Then, we have to restrict
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M, to a submanifold where the solutions of (1) are tangent to M,. Proceeding
further, we obtain a sequence of submanifolds:

oM oMy, M =M
Alternatively, these constraint submanifolds may be described as follows:
M, = {x e Mla(x)(v) =0, Vv e T M)
where
TME = {ve TMuolx)u,v) =0,Vu e TM_}

We call M, the secondary constraint submanifold, M5 the tertiary constraint
submanifold, and, in general, M; is the i-ary constraint submanifold.

If the algorithm stabilizes, i.e., there exists a positive integer k € N
such that M, = M, and dim M, # 0, then we have a final constraint
submanifold M; = My, on which a vector field X exists such that

(ix® = @)y, ¥

If £ is a solution of (2), then every arbitrary solution on M is of the
form £ = & + Y, where Y € (ker @ N TM)).

3. SYMMETRIES AND CONSTANTS OF THE MOTION FOR A
PRESYMPLECTIC SYSTEM WITH A GLOBAL DYNAMICS

In this section, we give a classification of symmetries and constants of
the motion for a particular case of presymplectic systems, those which admit
a global dynamics (Carifiena and Rafiada, 1988).

We say that a presymplectic system (M, w, o) admits a global dynamics
if there exists a vector field £ on M such that & satisfies (1). This condition
is equivalent to the following one:

a(ker w)(x) = 0, VxeM

Definition 3.1. A function F: M — R is said to be a constant of the
motion of & if EF = 0.

Thus, if v is an integral curve of &, then F o vy is a constant function.

Definition 3.2. A diffeomorphism ¢: M — M is said to be a symmetry
of £ if ¢ maps integral curves of £ onto integral curves of &, i.e., Td(§) = &.

Definition 3.3. A dynamical symmetry of & is a vector field X on M such
that its flow consists of symmetries of &, or, equivalently, [X, §] = 0.
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We denote by X“(M) the set of all the solutions of (1):
XMy = (X e X(MYixw = a)

Definition 3.4. A function F: M — R is said to be a constant of the
motion of X“(M) if F is constant along all the integral curves of any solution
of (1). That is, if F satisfies

XMF =20
Therefore, if F is a constant of the motion of X*(M), we have
(ker w)F = 0

Definition 3.5. A diffeomorphism &: M — M is said to be a symmetry
of X*(M) if $ satisfies

THE) € X(M)
for all £ e X“(M).
Definition 3.6. A dynamical symmetry of X*(M) is a vector field such that
X, X(M)] C ker @

Remark 3.1. If the foliation defined by ker w is a fibration, then the
quotient manifold M = M/ker w admits a structure of differentiable manifold
and the canonical projection m: M — M is a surjective submersion. In that
case, there exists a unique symplectic form @ on M such that w*@& = w. Since
we have supposed that the presymplectic system admits a global dynamics, the
1-form a projects onto a 1-form & on M such that w*& = «. Since & is
symplectic, there exists a unique vector field £ on M such that

@ = @

It is easy to prove that all the solutions of (1) are projectable and, in fact,
all them project onto the vector field £ From Definition 3.6, we deduce that

[X, ker w] C ker w
Therefore, X projects onto a vector field X on M such that
X, & =0

In other words, X is a dynamical symmetry of & This fact justifies Defini-
tion 3.6.

Remark 3.2. If F is a constant of the motion of X“(M), then XF is also
a constant of the motion of X°(M). In fact, since (ker w)F = 0, we have
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[X, EIF = X(EF) — §XF) = —&XF) =0
for all £ € X9M).

We denote by D(X“(M)) the set of dynamical symmetries of X“°(M).
Let X and Y be two dynamical symmetries of X“(M). Then [X, Y] is also a
dynamical symmetry of X“(M). In fact,
(X, Y], X2(M)] = [X, [¥, X°(MD]] + [V, [X=(M), X]]
C [X, ker w] + [V, ker o] C ker o

Therefore, D(X“(M)) is a Lie subalgebra of the Lie algebra X(M) of vector
fields on M.

Definition 3.7. A Cartan symmetry of (M, w, a) is a vector field X on
M such that:

i. iyw = dG, for some function G: M - R.

2. ixa - 0.

Proposition 3.1. If X is a Cartan symmetry of (M, w, o) then X is a
dynamical symmetry of X“(M).

Proof. If X is a Cartan symmetry, then, for each solution £ of (1) we have
ixgw = Lyi;w — igLyw
= Lya = d(ixya) =0
Thus, [X, £] € ker w, and therefore X is a dynamical symmetry of X*(M). =

Let C(w, a) be the set of all Cartan symmetries of (M, w, o). From a
straightforward computation, we deduce that, if X and Y are Cartan sym-
metries of (M, ®, o), [X, Y] is also a Cartan symmetry. Therefore, C{w, a)
is a Lie subalgebra of X(M). From Proposition 3.1 we obtain that

C(w, o) C D(X°(M))

Theorem 3.1 (Noether Theorem). If X is a Cartan symmetry of (M, o,
a), then the function G (as in Definition 3.7) is a constant of the motion of
X“(M). Conversely, if G is a constant of the motion of X“(M), then there
exists a vector field X such that

iy = dG

and, moreover, X is a Cartan symmetry of (M, w, a), and every vector field
X + Z with Z € ker w is also a Cartan symmetry of (M, o, o).
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Proof. In fact, if G is a constant of the motion of X“(M), it satisfies
(ker w)G = 0. Thus, the equation

s:yil) = dG
has a globally defined solution X on M and, since

= “‘ixig(.l) = _ix(l

we deduce that X is a Cartan symmetry of (M, w, ) and that every vector
field X + Z with Z € ker w is a Cartan symmetry.

Conversely, if X is a Cartan symmetry of (M, w, ), then, for each
solution £ of (1), we obtain

0= ixa = ixig&) = _iglx(i) = —g(G)

Therefore, G is a constant of the motion of X*(M). =

4. SYMMETRIES AND CONSTANTS OF THE MOTION FOR
GENERAL PRESYMPLECTIC SYSTEMS

Let (M, w, o) be a presymplectic system. In general, (1) does not have
a globally defined solution as in Section 3. The constraint algorithm allows
us to obtain (if it is possible) a final constraint submanifold M.

First of all, consider the presymplectic structure (M, j7 w, j*a) where
Jri My —> M is the embedding of M into M. We know that any solution of
(1) is a vector field X on M; such that

(ixw = a)py, 3

If we put wyy, = Jjfwand ay, = jfa, it is easy to prove that, if £ is a solution
of (1), then £ is also a solution of the following equation:

LxWy, = Oy C))
Define the sets
XM (My) = (X € X(Mp)lixoy, = op,)
XoMy) = (X € X(MpPliyo = o)y

Hence, X“(My) C XM(M)).

If we suppose that the rank of wy, is constant, then (M, Wy o) isa
presymplectic system with a global dynamics. We can therefore apply all the
definitions and results of Section 3 to this presymplectic system.
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We obtain that D(X“(M;)) is a Lie subalgebra of X(M;) and
Clwpyys aM[) is a Lie subalgebra of .¥(MJ-). Since any Cartan symmetry of
(M, Wy, cxM/) is a dynamical symmetry of .?E“’M/'(M/), we deduce that

Clewyr o) C DEM(M))
Theorem 3.1 now reads as follows:

Theorem 4.1 (Noether Theorem). If X is a Cartan symmetry of (M,
Wyt aMf), then G is a constant of the motion of X“/(M,). Conversely, if G
is a constant of the motion of X“*/(M;), then there exists a vector field X on
M; such that

inMf = dG

and, moreover, X is a Cartan symmetry and every vector field X + Z, with
Z & ker wyy, is a Cartan symmetry, too.

Since X“(M;) C XM (M;), we can distinguish another type of symmetry
and constant of the motion.

Definition 4.1. 1. A function F: M; — R is said to be a constant of
the motion of X“(M,) if F is a constant along all the integral curves of the
solutions of (3), i.e.,

XM)F = 0

2. A diffeomorphism ¢: M; — M is said to be a symmetry of X“(Mj)
if & maps integral curves of solutions of (3) onto integral curves of solutions
of (3).

3. A dynamical symmetry of X“(M;) is a vector field on M, such that

[X, ¥9(M))] € ker o N TM;

We now consider diffeomorphisms ¢: M — M such that they preserve
the 2-form w and the 1-form « (i.e., they preserve the presymplectic structure):

d*w = o, d*a = «

Proposition 4.1. If the diffeomorphism &: M — M preserves the presym-
plectic structure, then it restricts to a diffeomorphism ¢;: M; — M;, where
M; is the i-ary constraint submanifold. Therefore, ¢ restricts to a diffeomorph-
ism beﬁ Mf—) Mf

Proof. If i = 1, the proposition is trivially true. Now, suppose that the

proposition is true for i = m and we shall prove that it is also true for i =
m+ 1.
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We shall prove that, if v e T, M, then db(x)(v) € TyyM. In fact,
for each u e Ty yM,,, we obtain

W(GENEDX)(V), u) = w(xX)(v, dd™'(d(x)u) = 0

because w is d-invariant and d~(db(x)u € T, M, by the hypothesis of
induction. Thus, we deduce that

d(b(X)(T(M,}L, = Td)(.\')Mr}l;

We now only have to prove that, if x € M,,,,, then d(x) € M,,,,, i.e.,
forall v e TyM . a(d(x))(v) = 0. But, since « is also ¢-invariant, we obtain

a(d))() = ax)dd (b)) =0 =

Corollary 4.1. Let X be a vector field on M such that:
1. iyw = dG, for some function G: M — R.
2. ixa = 0.

Then Xmyis a Cartan symmetry of (Mj, Wptp O‘Mf)'

Proof. Since the flow of X consists of diffeomorphisms which preserve
the presymplectic structure, then, from Proposition 4.1, X is tangent to M.
Moreover, since X satisfies

iyw = dG
the restriction of X to M; also satisfies
ix,Mfwa = d(G/Mf)
Finally,
ix/MfaMf =0

Thus, X, is a Cartan symmetry of (Mj, Wpry, Opgy) and G,Mf is a constant of
the motion of X“*(M;). =

Example 4.1. Consider the presymplectic system (RS, w, o), where
u)=dx|/\dx4—dx2/\d,x3
a = x4dx4 "X3dX5 —XSd)C3

with (x!, x2, X%, x*, X3, x5) the standard coordinates on RS, It is easy to prove
that ker w is generated by d/dxs and 8/dxs. The only secondary constraint is
&) = x3 = 0. Since there are not tertiary constraints, the constraint algorithm
ends in M,, i.e.,
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My = M, = {(x;, X, X3, X4, Xs, Xe) € R%x3 = 0}
The solutions of the equation
(ixw = oy

are
%w(Mf) = X4 i + ker w
Bxl

If we denote by j: M; — R® the embedding of M; in RS, then
j*(.l) = (J)M/ = dX] A dX4

Therefore, ker wy, is generated by 9/dx,, 9/9xs, and 9/dxs. The solutions of
the equation

inMf = j*a
are

d
XoM(Mp) = x4 5; + ker wy,

Thus, X“(M,) is strictly contained in X/ (M;). We shall now study the
symmetries and constants of the motion for the presymplectic system (M,
, o).
A function F: M; —> R is a constant of the motion of XeMp) if it
satisfies the following conditions:
aF F F
x3-—=0, 9F _ 0, 9F _ 0
aX] 6X5 Bx(,
Therefore, each function F which depends only on x; and x4 is a constant of
the motion of X“’(Mf). For instance, F(x,, Xy, X4, X5, Xg) = x4 and F5(x,, x5,
X4, X5, Xg) = X> are constants of the motion.
A function F: M; — R is a constant of the motion of X“M(M;) if
it satisfies
OF _, OF OF _\ OF _

e = 0, = 0,
4 ax, 0x; 9xg

0

]

6x5

The functions F which are constants of the motion of %“’M/(Mf) are the ones
which depend only of x4, for instance

F\(x1, X9, X4 X5, X6) = X4

Obviously, all the constants of the motion of X“Mr(M) are also constants
of the motion of X“(M)).
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The vector field X = 8/dx, on R® satisfies
iyw = dG, where  G(xy, x3, X3, X4, X5, Xg) = Xg, ixya =0

From Corollary 4.1, we deduce that X is a Cartan symmetry of (M,
wpy, o) and Gy, is a constant of the motion of XM (Mp).

5. SYMMETRIES AND CONSTANTS OF THE MOTION FOR
SINGULAR LAGRANGIAN SYSTEMS

Let @ be an n-dimensional differentiable manifold. Consider a Lagran-
gian L: TQ —» R such that the Hessian matrix

(ee)

is nonregular. This type of Lagrangian is called singular or degenerate. Let
E; be the energy associated with L, defined by E;, = CL — L, where C is
the Liouville vector field on TQ. We denote by a, the Poincaré-Cartan
I-form defined by o, = J*(dL) and, by w, the Poincaré—Cartan 2-form
defined by w; = —duo,, where J is the canonical almost tangent structure
on 7Q. Let us recall that J is a (1,1) tensor field on TQ locally defined by

& dg*
q"
and C is the infinitesimal generator of the dilations on 7Q:
d
C = fA
q Yy

where (g4, ¢*) are fibered coordinates on TQ. Thus, we have
n aL
E. =3 ¢*— — Lig" ¢M
A=) aq

n

a; = z _Qé.qu
A=

1 8g*
3L 92
wL=qu"/\qu + 53794 qu A dgt

We suppose that the 2-form w, has constant rank and we apply the
constraint algorithm to the presymplectic system (70, w,, dE;). Then we
obtain the following sequence of constraint submanifolds:
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v =P P3P P =T0

If the algorithm stabilizes, then there exists an integer k such that
Pi1 = P = Pyand Py is the final constraint submanifold. Thus, we can
translate all the detinitions and results of Section 4 to this particular case.

Denote by X¢ the complete lift and by X” the vertical lift to TQ of a
vector field X on Q.

Definition 5.1. A vector field X on Q is said to be a Lie symmetry of
Xer(Py) if:
1. X€ is tangent to P.
2. [X}‘Pf’ :{“’P/(Pf)] C ker ij
The set L(X“#(Py)) consisting of all the Lie symmetries of X“7/(Py) is
a Lie subalgebra of X(Q). Moreover, we have
(EXP(P)))ip, C D(XP(Py))

Definition 5.2. A diffeomorphism ®: Q@ — Q is said to be a symmetry
of Lif Lo T® = L. A vector field X on @Q is said to be an infinitesimal
symmetry of L if

XL=0
i.e., if its flow consists of symmetries of L.

If we denote by /(L) the set of all the infinitesimal symmetries of L,
then /(L) is a Lie subalgebra of X(Q).

Proposition 5.1. If X is an infinitesimal symmetry of L, then 8(X“)p, =
(X*L)/p, is a constant of the motion of X“P(Py).

Proof. In local coordinates, we have

aL ax4 aL
XL=X*A—+4"—=—=0
3" 9 9g% ag*
and
oL oL aX*
¢ = X ——1dg?® + — — dqg¥
LXaL (aqg) q an aqg q
Sy OL_, pdXt 9L 9L 8X") .
An -8B q B n:2Aq:B 5 A B
a3q”aq dq° 94" 9q aqg” aq

a -
= (aﬁ (xm)) dg®

0
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But, if Lyce; = O, then
ixew, = d(o (X))

Moreover, we have X°E, = 0. We obtain the required result after applying
Corollary 4.1. =

Proceeding as in the proof of Proposition 5.1, we deduce that /(L) C
L(Xr(Pp)).

Definition 5.3. A vector field X on @ is said to be a Noether symmetry if
X°L=¢G*
for some function G on @, where G¢ denotes the complete lift of G to TQ.

By a similar procedure to that used in Proposition 5.1, we can characterize
a Noether symmetry as follows:

1. ixew; = dF for some function F.
2. XE, = 0.

In fact, we can choose F = a,(X¢) — G, where GV denotes the vertical
lift of G.

Proposition 5.2. If X is a Noether symmetry, then o;(X) — GV is a
constant of the motion of X“#(Py).

Proof. See the proof of Proposition 5.1. =

Denote by N(L) the set of all the Noether symmetries. We deduce that
N(L) is a Lie subalgebra of X(Q) and, we have

I(L) C N(L) C L(X“Pr(Py))
(N(L))fP/ - C((l)pf, an)

6. THE RELATIONSHIP WITH THE HAMILTONIAN
FORMULATION

Let L: TQ — R be an arbitrary Lagrangian. The Legendre map Leg: TQ
— T*Q is locally written as

Leg: (g%, ¢*) ~ (g%, pa)

with p, = 9L/0g¢*. If L is singular, Leg is not a diffeomorphism. However,
we suppose that L is almost regular, i.e., M| = Leg(TQ) is a submanifold
of T*Q and Leg is a submersion onto M, with connected fibers. The submani-
fold M, will be called the primary constraint submanifold.
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Let Ay be the Liouville 1-form and wy = —d\ the canonical symplectic
form on T*Q.

Since the Lagrangian is almost regular, the energy E; is constant along
the fibers of Leg. Therefore, E; projects onto a function H on M:

H(Leg(x)) = E(x), VxeTQ

If we denote by go: M, — T*Q the embedding of M, into T*Q, then
we obtain a presymplectic system (M|, (go)*wg, dH). If we now apply the
constraint algorithm to it, we shall obtain the following sequence of con-
straint submanifolds:

oMy = My S M,

Denote by M, the final constraint submanifold (if it exists) for this presymplec-
tic system. The Legendre map restricts to each submanifold P;, i = 1, of TQ
and then we obtain a family of surjective submersions Leg;: P; — M; which
relates the constraint submanifolds P; and M;. In fact, Leg; is a fibration, for
all i. Moreover, the quotient manifold P;/ker Legp, is diffeomorphic to M,.
The following commutative diagram illustrates this point:

Consider the equations
(ixoy = dEL)p, (5)
and
(ixwy = dH)py, (6)

Gotay and Nester (1979) proved that the Lagrangian and Hamiltonian
formulations are equivalent in the following sense. Given a vector field § €
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X(Py) which is a solution of (5) and Leg,-projectable, then its projection

Z = T Leg[(£) is a solution of (6). Conversely, if Z € X(M,) is a solution

of (6), then each projectable vector field on P, onto Z is a solution of (5).
Letji_;: P, — TQ and g,_: M; — M), | = i (where g, is the identity),

be the natural embeddings, and g/, = gp ° gi~1, | = i. Denote by
(ﬂpizj;k&)L, Ii=i=k
ou = (o), 1=isk

the restrictions of w, and wg to P; and M,, respectively. It is easy to prove that
wp; = Legtwy, and  j¥E, = (Leg)*gfH

Proposition 6.1. If F is a constant of~ the motion of X“Fr(Py), then F is
projectable onto M, and its projection F is a constant of the motion of
XeMi(M;).

Proof. In fact, if F is a constant of the motion of FE“’Pf(Pf), then
(ker (!)pf)F =0

But, since ker w, N TP, C ker wp,, We deduce that (ker 0, N TPH)F = 0.

Now, since ker TLeg, C ker w, N TPy, F is projectable. If Z,,,, is a solution
of the equation 4

ixony = g (dH)

then any projectable vector field £ on P,onto Z,,,, is a solution of the equation
Y proj ! My q

(ixwp, = djf Ep)sp, Q)
since
fgwp, — jF(dEL) = if(Legf wy) — Legf gf (dH)
= Leg} (iz,,, ©m, — 8f (dH)
=0
Hence, £ is a solution of (7). Since £&F = 0, we have Z,,,M!(F‘) =0 =

Proposition 6.2. If F is a constant of the motion of X“L(Py), then F is
projectable onto M, and its projection F is a constant of the motion of
Xem(Mp).

Proof. In fact, if Z,,, is a solution of the equation

M)

(ixwp, = dH)fo
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then any vector field £ on P projectable onto ZwM. 1s a solution of (5). Thus,
since £F = 0, we have Z,, F = 0. =m

Proposition 6.3. If X is a Cartan symmetry of (M, Wty gf (dH)), then
any vector field X’ on P, such that TLeg(X') = X is a Cartan symmetry of
(va ‘-onv j]* (dEL))'

Proof. If a vector field X on M; satisfies (1) Ixwy, = dG with G: M; —
R, and (2) X(H,Mf) = (), then for any X' € ?E(Pf) with TLeg(X') = X we
have (1) ixywp, = dG' with G’ = Leg¥G, and (2) X,(Eupf) = (), Therefore,
X’ is a Cartan symmetry of (P, wp, jff (dE;)). m

Proposition 6.4. If F is a constant of the motion of Z,,, ~which is a

solution of the equation

(ixwm, = dH)pm,
then (Leg,)*F is a constant of the motion for any £, such that TLegd§,,,) =
Zow,-

If ' is a constant of the motion of Z,,, which is a solution of the equation

ixwy, = gf (dH)
then (Leg,)*F is a constant of the motion for any Ewp, such that TLeg,u/(gu,,,f) =
Z

Ll)M/'

Proof. It directly follows from the equivalence of the Lagrangian and
Hamiltonian formulations. =

Let v be the operator which maps vector fields on @ into functions
on T*Q:

(X)) = a(X(x))
for all @ € T¥Q. Locally, if X = X4 8/dq?, we get
(X)(g*, pa) = paX*

where (¢, p.) are the induced coordinates on T*Q.
Let us recall that the complere lift of a vector field X on g to T*Q is
the vector field X¢* defined by

ixf'wQ = d(LX) (8)
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or, in other words, X¢" is the Hamiltonian vector field with Hamiltonian
function uX. Locally, we obtain

a aX®? 8
o~ P*aq" opa
(see de Ledn and Rodrigues, 1989).

Proposition 6.5. Let X be a vector field on M such that XL = 0, i.e.,
X is an infinitesimal symmetry of L. Then X¢ is Leg,-projectable and its
projection is XS,Z“. Moreover, (g;/)*uX) is a constant of the motion of
‘{NM[(M/)'

X< =X—

Proof. We shall first prove that X© is projectable onto M|, i.e., X satisfies
[X¢, ker TLeg] C ker TLeg
Since ker TLeg = ker w; N V(TQ), then, if Z € ker w;, we have that
iix gy = Lydizoy — izLycwy
= —idiycw; — Iyiycdw;
=0

Therefore, {X¢, ker w;] C ker w,. If we remember that J[X¢, V] = 0, for
each vertical vector field on TQ, we deduce that X is projectable.
In local coordinates, we have
A
Xc — XA q é‘)i.. i
64 3q® ag*
Thus,

d , c0XB L 9 s L 9 )
4" 5 T 3:Baah 5, T B o
dq* 3q° 04°3¢" dp, 3q*34” opa),,

TLeg(X€) = (XA —_ 4

But, since X°L = 0, we obtain

). GAN:
TLeg, X¢ = | XA ~—— — X
g\ ( an P —x an 3 A)/M‘ M\
Moreover,
ixi, @1 = d(g)*uX

and

Legt (X, H) = X(Ep)
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Therefore, X5, H = 0. Now, from Corollary 4.1 and the Noether theorem,
we obtain the result. =

Example 6.1. Consider the Lagrangian function L: TR* — R defined by

L==(4 + ¢)*

DN f—

(see Krupkovd, 1994). Here (¢', ¢°, ¢°) are the standard coordinates on R?
and (¢', ¢ ¢°, ¢', ¢* 4*) the induced ones on TR®,
The energy and the Poincaré—Cartan 1-form and 2-form are, respectively,

1 2
ELZCL_L=§(€?1+Q2)‘=L

o, = () + §2) dg, + (4 + ¢2) dg;
wy = dqy A dg, + dg, A dgy + dgy; A dgy + dgy A dgy
It is easy to prove that ker w, is generated by

d dJ d d d a3

dq, 8qy° dqy’ 94y 3¢y 94y

There are no secondary constraints, i.e., we have a global dynamics.
The solutions of the equation

ixw, = dE;

are given by

d 0
XqTQ) = ¢ — + ¢ — + k
(TQ) = 4 24, 7p) 34, er w,

A function F: TQ —» R would be a constant of the motion of
X“(TQ) if it satisfied the following equations:

9F . 3F oF  oF
Qio-tg—=0 ==
dq, 99, d0q;  9q,
P
g Loy Xo
aq; a9, 04> a43

Therefore, any function F(g,, §,) such that dF/dq, = dF/dq, is a constant of
the motion of X“4(TQ). For instance,

F(q\, g2 G5, 41, G2, §3) = 1 + ¢
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is a constant of the motion of X“L(TQ). From the Noether theorem, we obtain
the Cartan symmetries for the constant of the motion F, which are, precisely,
the solutions of the equation

Then,
colo 1o
28q| 26q2

where Z e ker w;. In fact, 8/3q, and 8/dq, are infinitesimal symmetries of
L. From Proposition 5.1 we have that

J 0
“L(ach) aL<aq2) q\ q2

is a constant of the motion, just F.
Now, we establish the Hamiltonian formulation for this example. Since
oL _ | ., aL . aL
——— = + ) = T —+ . - — =
PL= q P=op= 4t P = g
we deduce that the submanifold M, of T*Q is defined by the following
primary constraints:

0

br=p—p2=0 and by =p3 =0
If we take coordinates (¢', ¢°, ¢, p|) on M,, we obtain that
wy, = (gD)*wg = dq' A dp, + dg* A dp,
where
814 ¢ . p) = (' ¢ ¢ p,p.0)

The Hamiltonian energy H is
1
H=-~
2P

Thus, ker wy, is generated by

99
aq3’ aql 8q2
and the solutions of the equation
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are given by
d
‘%li(Ml) =TT + ker Wy,
oq
Since a function F: M, — R is a constant of the motion of X*"(M,) if

and only if

oF aF
P —

aF  9F
aq! - 0’ 6(]3 Py

= 0, —
gt oq*

we deduce that F has to be of the form F = F(p)).

7. THE SECOND-ORDER DIFFERENTIAL EQUATION
PROBLEM

Let Z be a vector field on M, such that
(izwy = dh\)m,
We know that
Pslker TLegy = M;

Given a vector field X on P, which projects onto Z, we can find a unique
point y in each fiber of Leg, such that X satisfies at y the SODE condition,
ie., (JX), = C,.

In local coordinates, if X is locally written as

x=xt2 g2 90
aq”t ag*

since z = Leg/(y) € M;, and we identify z with the fiber which contains y,
we deduce that X* is constant on the fiber. Moreover,
. —_ A S A a
U=JX-C=X"—-4¢"Y—
99
is tangent to the fibers. Let o(f) = (g*(r), ¢*(9)) be the integral curve of U
which contains the point y with coordinates (g8, ). We deduce that
a(f) = (g5, X* — e7'(X* — 48))
We then obtain

y = lim o(r) = (g4, X*)

=2
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Thus, the point y with coordinates (g, X*) is in the same fiber as y, since
the fibers are closed. Moreover, U(y) = 0, and, therefore X satisfies the
SODE condition at the point V.

We obtain a differentiable section a: M; — P, of Leg, and its image
S = a(My) is a submanifold of P, on which X satisfies the SODE condition.
In general, X is not tangent to S, but the vector field £’ = Ta(Z) is tangent
to S, it is a solution of the equation

(ixw, = dE)ss

and it also satisfies the SODE condition.
Now we study the relationship between the symmetries and constant of
the motion defined on S and the ones defined on Pj.

Proposition 7.1. If Z,,,, is a solution of the equation

inMf = dH/Mj (9)

then the vector field £’ = Toc(Zu,Mj) on S is a solution of the equation

where wg = j*w; and j is the embedding of S into TQ.
Conversely, if £ is a solution of (9), then Z = Ta (§') is a solution
of (10).

Proof. In fact,
gws = iraz(0*wp)
= (&™) *(izwn,)
and, since
dE s = (a_‘)*(dH/Mf)
we obtain the required resuit. m

Since § and My are diffeomorphic and the dynamics on them are equiva-
lent, there exists a complete equivalence between symmetries and constants
of the motion via o as well as via Leg//S: § — M,.

8. GENERALIZED HAMILTONIAN DYNAMICS

In this section, we study the relationship between the symmetries and
constants of the motion for a regular Lagrangian system on TQ and the
symmetries and constants of the motion for the presymplectic system defined
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on T*Q @ TQ. This formulation using the space T*Q @ TQ was established
by Skinner and Rusk (1983a,b) (see also Carifiena et al., 1988; Lépez, 1989;
de Ledn and Rodrigues, 1989).

Let Q be an n-dimensional differentiable manifold. Consider the Whitney
sum of T*Q with TQ, denoted by

Wo=T*Q D TQ
Let
m: T*Q © TQ — T*Q
T T*Q D TQ — TQ

be the projections onto the first and the second factors, respectively.

Let L: TQ — R be a regular Lagrangian with energy £;. The Poincaré—
Cartan 2-form w, is therefore symplectic and the Legendre transformation
is a local diffeomorphism. If we suppose, moreover, that the Lagrangian L
is hyperregular, then the Legendre transformation Leg: TQ — T*Q is a
diffeomorphism. We denote by &, the Euler—Lagrange vector field, by wg
the canonical symplectic form on T*Q, and by X, the Hamiltonian vector
field with energy H. We have

(Leg™YW*E, = H
TLeg(§) = Xy
(Leg™Y*o, = wg

Define on W, = T*Q ® TQ a presymplectic 2-form w = mfwg and a function
D: WQ - R by

D = (m, m) — wfL

If (g*) are local coordinates on a neighborhood U of Q, (¢*#, ¢#) the induced
coordinates on TU, and (g%, p,) the induced coordinates on T*U, then we
denote by (g*, pa, ¢*) the induced coordinates on T*U © TU. Locally, D is
written as follows:

D(g*, pa, ¢™) = pag* — L(g*, ¢*)

We obtain a presymplectic system (W;, w, dD) and we apply the constraint
algorithm to it (Lépez, 1989; Carifiena et al., 1988). The constraint submani-
fold W, of W, is just W, = Graph(Leg), and we denote by j, the embedding

A
W] 4 WO
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W, is locally characterized by the constraints
aL
¢A=pA~W, A=1,...,n
If we consider the 2-form j¥w = wy, on W), we obtain that
ker (.l)wI = TW]L M TW[

il

Since TW{ is locally generated by {3/3g*}, A l, ..., n, then a vector
field X is tangent to W, if and only if X(ba)aw, = 0O, for any A. Since L is
regular, 8/6g4, A = 1, ..., n, is not tangent to W, and thus ker wy, = 0.

Hence, (W), ww,) is a symplectic manifold.
Since y,w, and myy, are diffeomorphisms, we can consider the inverse
maps o and «, of these projections. They are defined as follows:

s ¥ T*Q—) Wl

oH
A sA A
(g%, 4% (q’BA’pA)

ay: 0 —> W,
oL

A Ay A sA
9" 9" (q 4 ,an)

We obtain the following commutative diagram:

Ty w, T*Q
%

W, T, Leg

a, O
The condition of a vector field X to be tangent to W, may be written
as follows. If
L I R S
dq

0pa d ‘IA

then X is tangent to W, if and only if

ZL 2
0L xm 2L _xi k=1,....n
99”99 94”3q
Since ay is a diffeomorphism, the vector field X = Toy,(§,) is well
defined. Locally, if

XA
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d d
— A_+ A _
gL q an g an
we obtain
2L 2
x={"% «5*‘ T I & Y L T
6 94°9q 04°04" ) 9pa)y,

Moreover, X is the solution of the equation

i.e., X is the Hamiltonian vector field X p.
We will now study the relationship between the symmetries and constants
of the motion of these systems.

Proposition 8.1. A function g: TM — R is a constant of the motion of
£, if and only if (ﬂz,wl)*g is a constant of the motion of X;}p.
Proof. In fact, since X;1p = (a2)4(§,), we have
X;10((T03,)¥8) = (2, )*(E18) =

The converse is trivial, because s, is a diffcomorphism. =

Corollary 8.1. A function g: T*M — R is a constant of the motion of
Xy if and only if (m,,, )*g is a constant of the motion of X;;,.

Proposition 8.2. A vector field X is a dynamical symmetry of X;;p if
and only if (1r, /w.)*X and ("TZ/W.)*X are dynamical symmetries of X and of
§,, respectively.

Proof. In fact, we have the following equivalences:

[%, X;;0] = 0 & [(M1, )4 K, Xu] = 0 (M, )4 K, £]1 =0 ®

Proposition 8.3. A vector field X on W, is a Cartan symmetry for the
presymplectic system (W, wy,, dj¥D) if and only if (m,, )« X is a Cartan

symmetry of (T*Q, wg, dH) or, equivalently, if (175, )eXisa Cartan symmetry
of (TQ, wy, dEy).

Proof. In fact, if
igww, = dF with F: W, - R
then

ai“(’}?‘”W]) l(‘rr”wl) X('oQ - d(()( F)
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In a similar way, by applying o, we obtain that
iy, xwr = d(af F)
Moreover,
X(j1D) = 0 & (myw)+DH = 0 & (7w, )« DEL =0 ™

Let X be a vector field on Q. There exists a unique vector field X<
on W such that

()X =X and (W)X = X¢
In local coordinates, if

0, 83Xt D

Xr — XA I
an q an an
J X8 9
xr=xr2 2 2
3g* 7" 3q* op,

then

X8 9 ). G
—_X Fe + qB _-E 3 f‘
9q" 9pa dq” 99
Thus, X" is tangent to W, if and only if

9L 4 0X4 9L ax8
[ s+ S, (7o), O
/W W

ST 3 a
X(‘" ) =XAaq—A - ps

i.e.,if and only if X< and X" are Leg-related. Therefore, if X is an infinitesimal
symmetry of L, it satisfies (11).

Proposition 8.4. Let X be a vector field on Q. Then, we have
XL=0&X"H=0e (X“"D)y, =0

9. AFFINE LAGRANGIANS

Let O be an n-dimensional differentiable manifold. Consider a function
h: Q@ — R and a |-form p on Q. We obtain an affine Lagrangian function
on TQ as follows:

L= +h

where {i: TQ — R is the function defined by f(x, v) = {u(x), u) and
R(x, u) = h(x) with u e T,Q. If . = au(q) dg*, we obtain

L= aA(q)qA + h
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Thus,
E, = —h
oy = —p'
wy = dp’

Since V(TQ) C ker w,, we have
dim ker w; = 2 dim(V,, ker w,)

Therefore, L is a Lagrangian of type III according to the classification by
Cantrijn et al. (1986).

We apply the constraint algorithm to the presymplectic system (70,
Wy, dEL)

For the sake of simplicity, we shall assume that the 2-form dju is symplec-
tic. Of course, we may analyze the general case when dp is degenerate, but
nothing especially new will be obtained. Then, there exists a unique vector
field X, such that

ix,dp = dh
X;, is the Hamiltonian vector field with energy A. Thus, the presymplectic

system (TQ, w;, dE;) has a global dynamics, since the complete lift X§ of
X), is a solution of the equation

i(—wy) = dE, (12)
The set of solutions of (12) is
XeuTQ) = X5 + V(TQ)

Since the presymplectic system (TQ, w;, E,;) has a global dynamics, all
the definitions and results obtained in Section 2 are applicable to it.
The Legendre transformation is defined by

Leg: TQ — T*Q
(g%, 4*) = (g%, an)
The map
¢ Q- Leg(TQ) = M,
(g = (q% an)

is a diffeomorphism and Im p = M, Leg = 74 ° . We deduce that Leg is
a submersion with connected fibers. Therefore, L is almost reguiar. If we
denote by j,: M, — T*Q the embedding, since ¢ is a diffeomorphism, we
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obtain that the 2-form j¥wg = wyy, is symplectic. If we define H: M, — R
by H o Leg = E,, we have that d*H = —h and, moreover, ¢*wy, = dp.
Then, the Hamiltonian vector fields Xy and —X, are ¢-related because the
symplectic structures dp. and (wy,, are symplectomorphic. Thus, the study of
the symmetries and constants of the motion for both systems is equivalent.

Our purpose is to find a relationship between the symmetries and con-
stants of the motion for the symplectic system ((Q, dp., dh) and the presymplec-
tic system (7Q, o, dE;).

Proposition 9.1. If F is a constant of the motion of X, then F” is a
constant of the motion of X*4(TQ). Conversely, if G is a constant of the
motion of X“(TQ), then G is projectable onto Q and its projection is a
constant of the motion of X,

Proof. In fact, if X, F = 0, then V(TQ)F" = 0 and also Xj F* = 0. Thus,
F" is a constant of the motion of X“L(TQ). Conversely. if G is a constant of
the motion of X“4(TQ), since (TQ)G = 0, we have that G is projectable.
If we denote by g the projection of G onto (O, then, since X;3G = 0, we
deduce that X;,g = 0. =

Proposition 9.2. Let X be a vector field on Q. If X is a dynamical
symmetry of X,, then X¢ is a dynamical symmetry of X“4(TQ).

Proof. If [X, X,] = 0, then [X¢, X;] = 0. We also have that [X¢, V] €
V(TQ), VYV € V(TQ). Hence, we deduce that

(X<, XHTQ)) C V(TQ) = kerw, W

Proposition 9.3. If X is a Cartan symmetry of the presymplectic system
(Q, dw., dh), then X¢ is a Cartan symmetry of (TQ, w,, dE;), and conversely.

Proof. In fact, if X is a Cartan symmetry of (Q, dp, dh), we have
ixdw =df  and Xh=20
where fis a function on Q. But this holds if and only if
ixc dp’ = df¥ and Xh =0

i.e., if X is a Cartan symmetry of the presymplectic system (7Q, w; = dp*,
dE;, = —dh"). =

From Proposition 9.3 we obtain, as a corollary, Theorem 2 of Carifiena
et al. (1988). This theorem states that if L is a regular Lagrangian and & is
the Euler-Lagrange vector field, there exists a one-to-one correspondence
between the constants of the motion of & and the Noether symmetries of
the presymplectic system (TTQ, duj, dE7}).
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10. REDUCTION OF A DEGENERATE LAGRANGIAN SYSTEM

Let L: TQ — R be a degenerate Lagrangian. We suppose that it satisfies
the following assumptions (Cantrijn et al., 1986):

I. The Poincaré—-Cartan 2-form w; is presymplectic, that is, it has
constant rank.

2. The Lagrangian L admits a global dynamics.

3. The foliation defined by ker w, is a fibration. In such a case, the
leaf space TQ/ker w; = (TQ), admits a manifold structure.

From these assumptions, there exists a unique symplectic form &, on
the manifold (TQ), such that w, = (m,)*(®,), where 1, is the projection 7,
TQ — (TQ),. Moreover, the energy function E; is also projectable because
(ker w,)E, = 0. We denote by E; its projection. Since ((TQ)o, @®;) is a
symplectic manifold, then there exists a unique vector  such that it satisfies
the equation

lEG)L = dEL
and each vector field £ € X“4(TQ) projects onto £ ie., Tm (k) = £
The following results, which give the relationship between the constants

of the motion and symmetries for the presymplectic system (TQ, w,, dE;) and
the symplectic system ((TQ)y, @, dE}), can be proved by a direct computation.

Proposition 10.1. If f: TQ — R is a constant of the motion of
X“4TQ), then f is projectable onto a function f which is also a constant of
the motion of €. Conversely, if £ (TM); — R is a constant of the motion of
€, then (1r,)*f is a constant of the motion of X°4TQ).

Proposition 10.2. If X is a dynamical symmetry of X“4(TQ), then X is
projectable and its projection X is a dynamical symmetry of £ Conversely,
if X is a dynamical symmetry of £, then any vector field on TQ that is
projectable onto X is a dynamical symmetry of X“4(TQ).

Proposition 10.3. If X is a Cartan symmetry of (7Q, w,, dE;), then X
is projectable and its projection X is a Cartan symmetry of ((TQ)o, &, dE)).
Conversely, if X is a Cartan symmetry of ((TQ)o, ®;, dE}), then any vector
field on TQ that is projectable onto X is a Cartan symmetry of (TQ, w, dE}).

If we suppose, moreover, that ker w, is a tangent distribution [i.e., ker
w; is the natural lift of a distribution D on Q (Cantrijn et al., 1986)], then
the canonical almost tangent structure J and the Liouville vector field C on
TQ project onto an integrable almost tangent structure J; on (TQ), and onto
a vector field C, such that

JoCo = O, LC()JO = _.]0
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respectively. De Ledn et al. (1994) proved that (TQ), has the unique structure
of a vector bundle which is isomorphic to the tangent bundle 7S of the
singular manifold § of C; and this isomorphism transports the canonical
almost tangent structure and the Liouville vector field of TS to J, and Cy,
respectively (see also de Filippo et al., 1989). We denote by & the isomorphism

&: TS = (TM),

Proposition 10.4. Let X be a vector field on Q. If X© is m,-projectable,
then there exists a vector field ¥ on § such that

TH(Y) = Twy(X°)

Proof. Since ker w, is an involutive tangent distribution, we have ker
w; = D¢, where D is an involutive distribution on Q. From the Frobenius
theorem, there exist local coordinates (x4, x5, | = A <=kandk + 1 =
B = n, around each point of Q such that

o~

/a8 9
kero, =\ 375" 3

Thus, in these coordinates, we can write the projection 1, as

Therefore

i (x?, xB, x4, xB) = (x4, xY)

By the definition of S, we can find local coordinates (%, y') such that the
isomorphism ¢ is locally expressed by

¢, ¥ = (4, &)

By using these local coordinates, the result follows from a direct com-
putation. =

Moreover, if Y is a vector field on S, there exists a vector field X on 0
such that

Tm(X) = T(Y)

In fact, for each vector field X' on Q, with X' = X + Z, where Z belongs
to D, we have

T (X)) = Td(Y)
We denote by wg = ¢*@, and by g = &*E, the pullbacks of &, and
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E,, respectively, Therefore (TS, ws, dg) is a Hamiltonian system, and there
exists a unique vector field &g such that

igws = dg

Obviously, we have that & = (Td)™'(£). From Proposition 10.4, we deduce
the following result.

Proposition 10.5. Let X be a vector field on Q.

1. If X is a Lie symmetry of X*2(7Q), then there exists a vector field
Y on § such that ¥ is a dynamical symmetry of &s.

2. If X is a Noether symmetry of L, then there exists a vector field ¥
on § such that Y* is a Cartan symmetry of the symplectic system
(TS, ws, dg).

Example 10.1. We shall apply the previous results to the electron-mono-
pole system (Marmo, 1988; de Filippo er al., 1989; de Ledn et al., 1994).
The equations of motion are

d _

dt 3
&' _n (13
prant=d

where r is the distance of the point to the origin 0 € R3, n = eg/dmm is the
product of the electric and magnetic charges divided by 4w times the mass
of the electron, and

1 ijk in cyclic order
€ = { —1 ijk in anticyclic order
0 if two indices are equal

This system does not admit a global Lagrangian description. We can solve
this problem by enlarging the configuration space to R X SU(2). Then we
can define a global Lagrangian L such that its motion equations project onto
equations (13). In fact, consider the Hopf fibration:

my SUQ2) — §?
and the induced projection

T(idg X my): T(R X SU2)) = TR X §?)
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Define a global Lagrangian on T(R X SU(2)) by
3
L(r, s) = % (r‘2 +r2y (xf)z) + nitr o3s™ s
j=1

Here, r denotes the coordinate in R and s an element of SU(2), x' is the
i-coordinate of my(s), and o is the usual Pauli matrix.
Now, consider the presymplectic system

(TR X SU2Y, w;, dE})

with o, the Poincaré—Cartan 2-form and E; the energy function. ker o, is
generated by

{X35, X5)

where X; is the fundamental vector field of U(1) = S' in the Hopf bundle
my: SU(2) — S%. Moreover, we have that the presymplectic system admits
a global dynamics and the foliation defined by ker w, is a fibration. Then,
the quotient manifold admits a unique vector bundle structure such that it is
isomorphic to a tangent bundle. Thus, we obtain the following diagram:

TR X SU(2)) ¢ z TR X SUQ)) _ g x SUD),
ker w, U
TRXSUR) o
RX SU2) T(R X §?)

idN ﬁg
RX §2

Electron—monopole system

From Propositions 10.4 and 10.5, we can relate the symmetries and
constants of the motion of the presymplectic system
(TR X SU2)), w,, dE})
with the corresponding ones of the symplectic system
(TR X §9), (b~ "Y*@y, (d7)*EL)

where ®, and £, are the projections of w; and E;, respectively.
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If we consider coordinates (y°, y', y%, y*) on SU(2), then a generic
element s of SU(2) can be represented by

3
s =)+ ; iyfat
=

where o', %, and o are Pauli matrixes and these coordinates satisfy the
constraint (3%)2 + (¥ + (V) + (3*)? = I. Now, let {Y', Y2, Y*} be the
basis of right-invariant vector fields of the Lie group SU(2):

Y"=y°—‘zr~yi~9~—§33€"~kyfi 1=i=<3
3y’ &
If we denote by the same letters the induced vector fields on R X SU(2),
then it is easy to prove that v
(YL =0
that is, (¥") is an infinitesimal symmetry of L. From Proposition 5.1, we have
that (Y)'L is a constant of the motign of X°UT(R X SU(2))). Also, from
Proposition 10.5, the vector field &, (Y?) is a Cartan symmetry of the symplec-
tic system (T(R X §?%), (b7 ") *@®,, (&~")*E,), and the constants of the motion
(Y?)"L project onto three constants of the motion f°, 1 < [ =< 3, of &, where
&g is the Hamiltonian vector field of (¢~")*E,. In fact, we have that
(VYL = elxixh + ™
r
which shows that it is projectable and its projection is a constant of the
motion of the projected symplectic system. Since f* is a constant of the motion
of &5, from the Noether theorem, there exists a vector field X' (the Hamiltonian
vector field of f) which is a Cartan symmetry of the symplectic system. A
straightforward computation shows that these vector fields X’ are precisely
the complete lifts of the infinitesimal generators

3

. Y

Xz=§: Lox) = 1=<=i<3
kzle}kx af‘ !

obtained from the canonical basis of 30(3), the Lie algebra of SO(3), that
is, the rotations in R3.

11. DEGENERATE LAGRANGIAN SYSTEMS WITH A LIE
GROUP OF SYMMETRIES

Let (M, w) be a presymplectic manifold, i.e., w is a closed 2-form with
constant rank. We suppose that we have a presymplectic action of a Lie
group G on a manifold M:

G:GXM-oM
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e, dfw = 0, Vg € G (Binz er al., 1988). If we denote by ¢ the Lie algebra
of the Lie group G, a momentum map is a map J: M — q* such that for all
€ € g the vector field &, (the infinitesimal generator of the flow de,e) is a
Hamiltonian vector field of J§ = {J, &), i.e,

ig 0 = d(J§)

Proposition 11.1. Let (M, o, dF) be a presymplectic system. We consider
a presymplectic action &: G X M — M of a Lie group G which admits a
momentum map and such that F is G-invariant. If the constraint algorithm
for the presymplectic system (M, w, dF) ends in a final constraint submanifold
M;and j: My — M is the embedding of M, into M, then we have that, for all
¢ e g, the map j*(JE): M; — R is a constant of the motion of X“*(M,) and
therefore it is a constant of the motion of X°(M).

Proof. Let J: M — g* be a momentum map. Hence
iy = d(J§)
and, moreover, from ¢} F = F, Vg € G, we have
L, F=&F=0
Now we apply Corollary 4.1. =
We now consider the action of a Lie group G on a manifold ¢:
bG:GXQ->Q
and lift this action to an action on TQ:
¢ G X TQ > TQ
as follows:
N TQ > TQ, (&7, = T,

We suppose that L: TQ — R is a G-invariant Lagrangian, ie., Lo ¢, = L,
Vg € G. We have that E;, a;, and w, are invariants by ¢ and we deduce
that V& e g the vector field &, is an infinitesimal symmetry of L. From
Proposition 5.1, we deduce that ((§Q)“L)/P/ is a constant of the motion of
X“Pr(P;) (here, Py is the final constraint submanifold for the presymplectic
system (TQ, w,, dE;)).

12. SYMMETRIES AND CONSTANTS OF THE MOTION FOR
PRECOSYMPLECTIC SYSTEMS

Let (M, £}, m) be a precosymplectic system, i.e., {} is a closed 2-form
with constant rank 2r and m a closed 1-form (Chinea et al., 1994).
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The dynamic for this precosymplectic system (M, {1, m) is given by
introducing a Hamiltonian function H: M — R. We consider the modified
precosymplectic system (M, y = Q + dH A m, m). The 2-form Qy is
obviously closed, although it may not have constant rank. In fact, all that
we obtain is that

2r=rank {3y = 2r + 2
We distinguish two cases:

1. First Case. Qy has constant rank 2r, that is, (), d?) is a precosymplec-
tic structure.
Then, the equations

iXQH = 0, lx'\'] =1 (14)

have globally defined solutions, i.e., there exists a vector field § on M such
that satisfies (14). It is clear that any vector field

£+ ker Oy N kerm

is a solution of (14). We denote by X®#™(M) the set of all the solutions of
(14), i.e.,

XOu(My = (£ + ZIZ € ker 1 N ker 1}

Definition 12.1. A constant of the motion of X“¥¥(Mf) is a function F:
M — R such that ¥4 VANF = 0.

Remark 12.1. A constant of the motion of X“*"(M) satisfies that
(ker £, N MF = 0.

The following lemma allows us to give a useful characterization of the
constants of the motion of X“*™W(M).

Lemma 12.1. If a function F: M — R is a constant of the motion of
X©@um(M) then we have that

(kﬁr QH)F =0
Proof. In fact, if Z € ker (), we obtain
Z = (Z - (D¥ + (2§

for any solution £ of (14). Since Z — n(Z)§ € ker Qy M ker m, from Remark
12.1, we deduce that, if F is a constant of the motion of X V(M), then

ZF=Z-nDHF + n(DEFH =0 =

Therefore, we can characterize the constants of the motion as the func-
tions F such that they satisfy the property
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(ker Q)F =0

Definition 12.2. A vector field X on M is said to be a dynamical symmetry
of XM if

[X, ker Q4] C ker Oy

Remark 12.2. If X is a dynamical symmetry of X‘®"W(Af), then any
vector field Y such that Y = X + Z, with Z ¢ ker Oy, is also a dynamical
symmetry of X**W(M). In fact, for any Z' € ker () we have

i[Z,Z']QH = LzizQy — iZ’LZ‘QH
=0
Therefore, {Z, Z'] e ker {}y. We deduce that
[Y, ker Qy] = [X, ker )] + [ker Oy, ker ] C ker (y.

Remark 12.3. Denote by D(X“**™(M)) the set of all the dynamical
symmetries of X*#™(M). It is easy to prove that if X and Y are two dynamical
symmetries of X@*"(M), then [X, Y] is also a dynamical symmetry of
X @M. Thus, D(X“*(M)) is a Lie subalgebra of X(M).

Definition 12.3. A Cartan symmetry of the precosymplectic system
(M, Qy, m) is a vector field X on M such that

iXQH = dG
where G € C*(M).

Proposition 12.1. If X is a Cartan symmetry of the precosymplectic
system (M, £y, m), then X is a dynamical symmetry of X@#(An),

Proof. In fact, if Z € ker )y, we have
ixz€ = Lyidy — izLxQy
= —izdixﬂg = O

Then, {X, ker Q4] C ker 0y and therefore X is a dynamical symmetry of
x(ilﬁ,n)(M)_ B

Remark 12.4. We denote by C({)4, m) the set of all the Cartan symmetries
of the precosymplectic system (M, }y, 7). If X and Y are Cartan symmetries
such that

iXQH =dG and iYQH = dG’
then [X, Y] is a Cartan symmetry of (M, {4, m). In fact,



Singular Lagrangian Systems 1009

ix @y = LyiyQy — iyLxy
= LxdG’ - lyddG
= d(XG")

The set C(y, M) is a Lie subalgebra of X(M). Moreover, from Proposition
12.1 we deduce that C(Q)y, ) C D(XHM(M)).

Theorem 12.1 (Noether Theorem). If a vector field X is a Cartan symme-
try of the precosymplectic system (M, (g, m), then G is a constant of the
motion of X@#™(M). Conversely, if G is a constant of the motion of
X @M, the equation

iXﬂH = dG
has a solution, and each solution is a Cartan symmetry of the precosymplectic
system (M, Qy, m).

Proof. In fact, if X is a Cartan symmetry of the precosymplectic system
(M, Q4. M), then, for all Z e ker {1y, we obtain that

izixﬂg =7ZG =0
Hence, G is a constant of the motion of X*#™(M). Conversely, if G is a
constant of the motion X“¥™(M), the equation
iXQH = dG
has a solution because (ker {1)G = 0, and therefore every solution is a
Cartan symmetry of the system (M, Oy, m). B

2. Second Case. (y; does not have constant rank.
We know that (14) has a solution at the points x of M where rank({ly),
= 2r. We define

M, = {x € Mirank(Qly), = 2r}

which we suppose to be a submanifold. On M,, (14) has a solution for all
x € M,, ie., there exists a vector v € T, M such that

(), =0 and ime =1

There exists a vector field X on M, tangent to M, such that X satisfies (14).
But, in general, X will not be tangent to M,. Then we consider the submanifold
M, where there exist solutions of (14) tangent to M,. Following this process,
we obtain a sequence of submanifolds M, [ = 1, . . ., called the [-ary constraint
submanifolds. We can also define the submanifolds M, as follows:

M, = (x € M,_\/n, € b(T M)}
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where
b: TM — T*M
X = ixQy + (imm
If the algorithm ends, we obtain the manifold M; where the equations
(ixQy = 0, ixm = Dy,

have as a solution a vector field £ on M;. M, is called the final constraint
submanifold.

If we denote by j;: M; —> M the embedding of M, in M, then we can
consider the precosymplectic system (M, jF{y, j#n) and study the sym-
metries and constants of the meotion for the precosymplectic system
XUf ﬂ*"”f'f"“)(ﬁflf) as in the first case.

We can apply these results to classify the symmetries and constants of
the motion when we have a singular nonautonomous (or time-dependent)
Lagrangian. In fact, if we suppose that L: R X TQ — R is a nonautonomous
Lagrangian such that w,, is a presymplectic 2-form of rank 2r on {1} X
TQ = TQ, where L(x) = L(1, x), Vx € TQ, then, if we define

O, =d,L+E d
Q, = —d6,
we have that 2r < rank {); = 2r + 2. The intrinsic motions equations are
ix(}, =0, ixdt =1

As above, we can distinguish two cases, that is, rank {}; = 2r and otherwise.
In addition, a finer analysis can be done by considering infinitesimal symmet-
ries on the configuration space R X (. The reader can obtain these results
by taking into account those for the regular case (Prince, 1985; de Léon and
Martin de Diego, 1995).
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